Cargando…

Development and initial testing of an in vitro model simulating class II furcation defects

OBJECTIVE: To compare surface topography of porcine and human root dentin and to develop a new in vitro model for class II furcation defects. The hypothesis for this study was that porcine mandible blocks can function as a model for class II furcation defects. BACKGROUND: Treatment of mandibular cla...

Descripción completa

Detalles Bibliográficos
Autores principales: Hugo, Jørgen, Koldsland, Odd Carsten, Aass, Anne Merete, Tiainen, Hanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019757/
https://www.ncbi.nlm.nih.gov/pubmed/33283478
http://dx.doi.org/10.1002/cre2.346
_version_ 1783674439131463680
author Hugo, Jørgen
Koldsland, Odd Carsten
Aass, Anne Merete
Tiainen, Hanna
author_facet Hugo, Jørgen
Koldsland, Odd Carsten
Aass, Anne Merete
Tiainen, Hanna
author_sort Hugo, Jørgen
collection PubMed
description OBJECTIVE: To compare surface topography of porcine and human root dentin and to develop a new in vitro model for class II furcation defects. The hypothesis for this study was that porcine mandible blocks can function as a model for class II furcation defects. BACKGROUND: Treatment of mandibular class II furcation defects is unpredictable. There is a need for in vitro models to investigate new treatment methods. METHODS: A model to investigate the surface topography of porcine and human root dentin was developed and the two tissues compared by SEM imaging and profilometer. A novel method for studying class II furcation defects was then tested. Blocks of porcine mandibles with molar 3 were prepared. Buccal class II furcation defects were created. The furcation area was isolated and bioluminescent Staphylococcus epidermidis Xen43 was used to form a biofilm in the furcation area to test the functionality of the novel furcation model. RESULTS: Micromechanical damage caused by debridement on porcine and human root dentin showed similar pattern. No significant difference in the surface morphological parameters was observed between the corresponding porcine and human samples. The model allowed for assessment of the root surface inside the furcation area. While the number of viable bacteria in the furcation following debridement could be quantified, no significant difference between the treatment groups was detected, likely due to bacterial colonization within the periodontal ligament space. CONCLUSION: Porcine and human root dentin show similar surface topography following surface debridement. Porcine mandible blocks can function as a model for class II furcation defects. However, further development and refinement of the novel in vitro model is warranted.
format Online
Article
Text
id pubmed-8019757
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80197572021-04-08 Development and initial testing of an in vitro model simulating class II furcation defects Hugo, Jørgen Koldsland, Odd Carsten Aass, Anne Merete Tiainen, Hanna Clin Exp Dent Res Original Articles OBJECTIVE: To compare surface topography of porcine and human root dentin and to develop a new in vitro model for class II furcation defects. The hypothesis for this study was that porcine mandible blocks can function as a model for class II furcation defects. BACKGROUND: Treatment of mandibular class II furcation defects is unpredictable. There is a need for in vitro models to investigate new treatment methods. METHODS: A model to investigate the surface topography of porcine and human root dentin was developed and the two tissues compared by SEM imaging and profilometer. A novel method for studying class II furcation defects was then tested. Blocks of porcine mandibles with molar 3 were prepared. Buccal class II furcation defects were created. The furcation area was isolated and bioluminescent Staphylococcus epidermidis Xen43 was used to form a biofilm in the furcation area to test the functionality of the novel furcation model. RESULTS: Micromechanical damage caused by debridement on porcine and human root dentin showed similar pattern. No significant difference in the surface morphological parameters was observed between the corresponding porcine and human samples. The model allowed for assessment of the root surface inside the furcation area. While the number of viable bacteria in the furcation following debridement could be quantified, no significant difference between the treatment groups was detected, likely due to bacterial colonization within the periodontal ligament space. CONCLUSION: Porcine and human root dentin show similar surface topography following surface debridement. Porcine mandible blocks can function as a model for class II furcation defects. However, further development and refinement of the novel in vitro model is warranted. John Wiley and Sons Inc. 2020-12-06 /pmc/articles/PMC8019757/ /pubmed/33283478 http://dx.doi.org/10.1002/cre2.346 Text en © 2020 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Hugo, Jørgen
Koldsland, Odd Carsten
Aass, Anne Merete
Tiainen, Hanna
Development and initial testing of an in vitro model simulating class II furcation defects
title Development and initial testing of an in vitro model simulating class II furcation defects
title_full Development and initial testing of an in vitro model simulating class II furcation defects
title_fullStr Development and initial testing of an in vitro model simulating class II furcation defects
title_full_unstemmed Development and initial testing of an in vitro model simulating class II furcation defects
title_short Development and initial testing of an in vitro model simulating class II furcation defects
title_sort development and initial testing of an in vitro model simulating class ii furcation defects
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019757/
https://www.ncbi.nlm.nih.gov/pubmed/33283478
http://dx.doi.org/10.1002/cre2.346
work_keys_str_mv AT hugojørgen developmentandinitialtestingofaninvitromodelsimulatingclassiifurcationdefects
AT koldslandoddcarsten developmentandinitialtestingofaninvitromodelsimulatingclassiifurcationdefects
AT aassannemerete developmentandinitialtestingofaninvitromodelsimulatingclassiifurcationdefects
AT tiainenhanna developmentandinitialtestingofaninvitromodelsimulatingclassiifurcationdefects