Cargando…
Risk Prediction in Patients With Heart Failure With Preserved Ejection Fraction Using Gene Expression Data and Machine Learning
Heart failure with preserved ejection fraction (HFpEF) has become a major health issue because of its high mortality, high heterogeneity, and poor prognosis. Using genomic data to classify patients into different risk groups is a promising method to facilitate the identification of high-risk groups...
Autores principales: | Zhou, Liye, Guo, Zhifei, Wang, Bijue, Wu, Yongqing, Li, Zhi, Yao, Hongmei, Fang, Ruiling, Yang, Haitao, Cao, Hongyan, Cui, Yuehua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019773/ https://www.ncbi.nlm.nih.gov/pubmed/33828587 http://dx.doi.org/10.3389/fgene.2021.652315 |
Ejemplares similares
-
Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data
por: Wu, Yongqing, et al.
Publicado: (2021) -
Epigenetic remodeling in heart failure with preserved ejection fraction
por: Ambrosini, Samuele, et al.
Publicado: (2022) -
Heart failure with preserved ejection fraction
por: Rigolli, Marzia, et al.
Publicado: (2013) -
Heart failure with preserved ejection fraction
por: ElGuindy, Ahmed, et al.
Publicado: (2012) -
Time-Varying Gene Network Analysis of Human Prefrontal Cortex Development
por: Wang, Huihui, et al.
Publicado: (2020)