Cargando…
Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically desig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019823/ https://www.ncbi.nlm.nih.gov/pubmed/33828580 http://dx.doi.org/10.3389/fgene.2021.617282 |
_version_ | 1783674454402924544 |
---|---|
author | Kang, Yoonjee Thieffry, Denis Cantini, Laura |
author_facet | Kang, Yoonjee Thieffry, Denis Cantini, Laura |
author_sort | Kang, Yoonjee |
collection | PubMed |
description | Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET. |
format | Online Article Text |
id | pubmed-8019823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80198232021-04-06 Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms Kang, Yoonjee Thieffry, Denis Cantini, Laura Front Genet Genetics Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET. Frontiers Media S.A. 2021-03-22 /pmc/articles/PMC8019823/ /pubmed/33828580 http://dx.doi.org/10.3389/fgene.2021.617282 Text en Copyright © 2021 Kang, Thieffry and Cantini. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Kang, Yoonjee Thieffry, Denis Cantini, Laura Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title | Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title_full | Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title_fullStr | Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title_full_unstemmed | Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title_short | Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms |
title_sort | evaluating the reproducibility of single-cell gene regulatory network inference algorithms |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019823/ https://www.ncbi.nlm.nih.gov/pubmed/33828580 http://dx.doi.org/10.3389/fgene.2021.617282 |
work_keys_str_mv | AT kangyoonjee evaluatingthereproducibilityofsinglecellgeneregulatorynetworkinferencealgorithms AT thieffrydenis evaluatingthereproducibilityofsinglecellgeneregulatorynetworkinferencealgorithms AT cantinilaura evaluatingthereproducibilityofsinglecellgeneregulatorynetworkinferencealgorithms |