Cargando…
Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants
Resting energy expenditure (REE) is determined mainly by fat-free mass (FFM). FFM depends also on daily physical activity. REE normally decreases with increased age due to decreases in FFM and physical activity. Measuring REE is essential for estimating total energy expenditure. As such, there are a...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020034/ https://www.ncbi.nlm.nih.gov/pubmed/33828487 http://dx.doi.org/10.3389/fphys.2021.641455 |
_version_ | 1783674503623081984 |
---|---|
author | Frings-Meuthen, Petra Henkel, Sara Boschmann, Michael Chilibeck, Philip D. Alvero Cruz, José Ramón Hoffmann, Fabian Möstl, Stefan Mittag, Uwe Mulder, Edwin Rittweger, Natia Sies, Wolfram Tanaka, Hirofumi Rittweger, Jörn |
author_facet | Frings-Meuthen, Petra Henkel, Sara Boschmann, Michael Chilibeck, Philip D. Alvero Cruz, José Ramón Hoffmann, Fabian Möstl, Stefan Mittag, Uwe Mulder, Edwin Rittweger, Natia Sies, Wolfram Tanaka, Hirofumi Rittweger, Jörn |
author_sort | Frings-Meuthen, Petra |
collection | PubMed |
description | Resting energy expenditure (REE) is determined mainly by fat-free mass (FFM). FFM depends also on daily physical activity. REE normally decreases with increased age due to decreases in FFM and physical activity. Measuring REE is essential for estimating total energy expenditure. As such, there are a number of different equations in use to predict REE. In recent years, an increasing number of older adults continue to participate in competitive sports creating the surge of master athletes. It is currently unclear if these equations developed primarily for the general population are also valid for highly active, older master athletes. Therefore, we tested the validity of six commonly-used equations for predicting REE in master athletes. In conjunction with the World Masters Athletic Championship in Malaga, Spain, we measured REE in 113 master athletes by indirect calorimetry. The most commonly used equations to predict REE [Harris & Benedict (H&B), World Health Organization (WHO), Müller (MÜL), Müller-FFM (MÜL-FFM), Cunningham (CUN), and De Lorenzo (LOR)] were tested for their accuracies. The influences of age, sex, height, body weight, FFM, training hours per week, phase angle, ambient temperature, and athletic specialization on REE were determined. All estimated REEs for the general population differed significantly from the measured ones (H&B, WHO, MÜL, MÜL-FFM, CUN, all p < 0.005). The equation put forward by De Lorenzo provided the most accurate prediction of REE for master athletes, closely followed by FFM-based Cunningham’s equation. The accuracy of the remaining commonly-used prediction equations to estimate REE in master athletes are less accurate. Body weight (p < 0.001), FFM (p < 0.001), FM (p = 0.007), sex (p = 0.045) and interestingly temperature (p = 0.004) are the significant predictors of REE. We conclude that REE in master athletes is primarily determined by body composition and ambient temperature. Our study provides a first estimate of energy requirements for master athletes in order to cover adequately athletes’ energy and nutrient requirements to maintain their health status and physical performance. |
format | Online Article Text |
id | pubmed-8020034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80200342021-04-06 Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants Frings-Meuthen, Petra Henkel, Sara Boschmann, Michael Chilibeck, Philip D. Alvero Cruz, José Ramón Hoffmann, Fabian Möstl, Stefan Mittag, Uwe Mulder, Edwin Rittweger, Natia Sies, Wolfram Tanaka, Hirofumi Rittweger, Jörn Front Physiol Physiology Resting energy expenditure (REE) is determined mainly by fat-free mass (FFM). FFM depends also on daily physical activity. REE normally decreases with increased age due to decreases in FFM and physical activity. Measuring REE is essential for estimating total energy expenditure. As such, there are a number of different equations in use to predict REE. In recent years, an increasing number of older adults continue to participate in competitive sports creating the surge of master athletes. It is currently unclear if these equations developed primarily for the general population are also valid for highly active, older master athletes. Therefore, we tested the validity of six commonly-used equations for predicting REE in master athletes. In conjunction with the World Masters Athletic Championship in Malaga, Spain, we measured REE in 113 master athletes by indirect calorimetry. The most commonly used equations to predict REE [Harris & Benedict (H&B), World Health Organization (WHO), Müller (MÜL), Müller-FFM (MÜL-FFM), Cunningham (CUN), and De Lorenzo (LOR)] were tested for their accuracies. The influences of age, sex, height, body weight, FFM, training hours per week, phase angle, ambient temperature, and athletic specialization on REE were determined. All estimated REEs for the general population differed significantly from the measured ones (H&B, WHO, MÜL, MÜL-FFM, CUN, all p < 0.005). The equation put forward by De Lorenzo provided the most accurate prediction of REE for master athletes, closely followed by FFM-based Cunningham’s equation. The accuracy of the remaining commonly-used prediction equations to estimate REE in master athletes are less accurate. Body weight (p < 0.001), FFM (p < 0.001), FM (p = 0.007), sex (p = 0.045) and interestingly temperature (p = 0.004) are the significant predictors of REE. We conclude that REE in master athletes is primarily determined by body composition and ambient temperature. Our study provides a first estimate of energy requirements for master athletes in order to cover adequately athletes’ energy and nutrient requirements to maintain their health status and physical performance. Frontiers Media S.A. 2021-03-22 /pmc/articles/PMC8020034/ /pubmed/33828487 http://dx.doi.org/10.3389/fphys.2021.641455 Text en Copyright © 2021 Frings-Meuthen, Henkel, Boschmann, Chilibeck, Alvero Cruz, Hoffmann, Möstl, Mittag, Mulder, Rittweger, Sies, Tanaka and Rittweger. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Frings-Meuthen, Petra Henkel, Sara Boschmann, Michael Chilibeck, Philip D. Alvero Cruz, José Ramón Hoffmann, Fabian Möstl, Stefan Mittag, Uwe Mulder, Edwin Rittweger, Natia Sies, Wolfram Tanaka, Hirofumi Rittweger, Jörn Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title | Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title_full | Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title_fullStr | Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title_full_unstemmed | Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title_short | Resting Energy Expenditure of Master Athletes: Accuracy of Predictive Equations and Primary Determinants |
title_sort | resting energy expenditure of master athletes: accuracy of predictive equations and primary determinants |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020034/ https://www.ncbi.nlm.nih.gov/pubmed/33828487 http://dx.doi.org/10.3389/fphys.2021.641455 |
work_keys_str_mv | AT fringsmeuthenpetra restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT henkelsara restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT boschmannmichael restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT chilibeckphilipd restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT alverocruzjoseramon restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT hoffmannfabian restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT mostlstefan restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT mittaguwe restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT mulderedwin restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT rittwegernatia restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT sieswolfram restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT tanakahirofumi restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants AT rittwegerjorn restingenergyexpenditureofmasterathletesaccuracyofpredictiveequationsandprimarydeterminants |