Cargando…

Reduced cellular glucose transport confers natural protection against dextrose‐induced superoxide generation and endoplasmic reticulum stress in domestic hen

Normal blood glucose levels in avian species are two to fourfold higher than that in humans and the higher blood glucose levels in birds do not cause adverse effects. Endothelial cells isolated from the aorta of the domestic hen (Gallus gallus domesticus) and chicken aortic smooth muscle cells (CAOS...

Descripción completa

Detalles Bibliográficos
Autores principales: Mooradian, Arshag D., Haas, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020048/
https://www.ncbi.nlm.nih.gov/pubmed/33818012
http://dx.doi.org/10.14814/phy2.14816
Descripción
Sumario:Normal blood glucose levels in avian species are two to fourfold higher than that in humans and the higher blood glucose levels in birds do not cause adverse effects. Endothelial cells isolated from the aorta of the domestic hen (Gallus gallus domesticus) and chicken aortic smooth muscle cells (CAOSMC) were compared to human coronary artery endothelial cells (HCAEC) and human primary aortic smooth muscle cells (HASMC). Superoxide (SO) generation was measured using a superoxide‐reactive probe. ER stress was measured using the placental alkaline phosphatase assay (ES‐TRAP). Glucose transport kinetics were determined using the (3)H‐2‐deoxyglucose tracer. Dextrose‐induced SO generation and ER stress were significantly blunted in avian endothelial cells compared to human cells. The Vmax of glucose uptake (in nmoles/mg protein/min) in avian endothelial cells (0.0018 ± 0.0001) and smooth muscle cells (0.0015 ± 0.0007) was approximately 18–25 fold lower compared to the Vmax in HCAEC (0.033 ± 0.0025) and HASMC (0.038 ± 0.004) (all p < 0.0001). The Michaelis–Menten constant (Km) of transport was also significantly different (p < 0.0001) in avian species. The relative resistance of avian cells to dextrose‐induced oxidative stress and ER stress is mostly the result of reduced cellular dextrose transport.