Cargando…

PCAT-1 facilitates breast cancer progression via binding to RACK1 and enhancing oxygen-independent stability of HIF-1α

Hypoxia induces a series of cellular adaptive responses that enable promotion of inflammation and cancer development. Hypoxia-inducible factor-1α (HIF-1α) is involved in the hypoxia response and cancer promotion, and it accumulates in hypoxia and is degraded under normoxic conditions. Here we identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jianlong, Chen, Xuyi, Hu, Haijuan, Yao, Mengting, Song, Yanbiao, Yang, Aimin, Xu, Xiuhua, Zhang, Ning, Gao, Jianzhao, Liu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020346/
https://www.ncbi.nlm.nih.gov/pubmed/33850635
http://dx.doi.org/10.1016/j.omtn.2021.02.034
Descripción
Sumario:Hypoxia induces a series of cellular adaptive responses that enable promotion of inflammation and cancer development. Hypoxia-inducible factor-1α (HIF-1α) is involved in the hypoxia response and cancer promotion, and it accumulates in hypoxia and is degraded under normoxic conditions. Here we identify prostate cancer associated transcript-1 (PCAT-1) as a hypoxia-inducible long non-coding RNA (lncRNA) that regulates HIF-1α stability, crucial for cancer progression. Extensive analyses of clinical data indicate that PCAT-1 is elevated in breast cancer patients and is associated with pathological grade, tumor size, and poor clinical outcomes. Through gain- and loss-of-function experiments, we find that PCAT-1 promotes hypoxia-associated breast cancer progression including growth, migration, invasion, colony formation, and metabolic regulation. Mechanistically, PCAT-1 directly interacts with the receptor of activated protein C kinase-1 (RACK1) protein and prevents RACK1 from binding to HIF-1α, thus protecting HIF-1α from RACK1-induced oxygen-independent degradation. These findings provide new insight into lncRNA-mediated mechanisms for HIF-1α stability and suggest a novel role of PCAT-1 as a potential therapeutic target for breast cancer.