Cargando…
A new model of Hopfield network with fractional-order neurons for parameter estimation
In this work, we study an application of fractional-order Hopfield neural networks for optimization problem solving. The proposed network was simulated using a semi-analytical method based on Adomian decomposition,, and it was applied to the on-line estimation of time-varying parameters of nonlinear...
Autores principales: | Fazzino, Stefano, Caponetto, Riccardo, Patanè, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020623/ https://www.ncbi.nlm.nih.gov/pubmed/33840898 http://dx.doi.org/10.1007/s11071-021-06398-z |
Ejemplares similares
-
Evolving Dynamic S-Boxes Using Fractional-Order Hopfield Neural Network Based Scheme
por: Ahmad, Musheer, et al.
Publicado: (2020) -
Dynamics Analysis of a New Fractional-Order Hopfield Neural Network with Delay and Its Generalized Projective Synchronization
por: Hu, Han-Ping, et al.
Publicado: (2018) -
Fractional-order devices
por: Biswas, Karabi, et al.
Publicado: (2017) -
Robust Exponential Memory in Hopfield Networks
por: Hillar, Christopher J., et al.
Publicado: (2018) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022)