Cargando…
Constellation Loss: Improving the Efficiency of Deep Metric Learning Loss Functions for the Optimal Embedding of histopathological images
BACKGROUND: Deep learning diagnostic algorithms are proving comparable results with human experts in a wide variety of tasks, and they still require a huge amount of well-annotated data for training, which is often non affordable. Metric learning techniques have allowed a reduction in the required a...
Autores principales: | Medela, Alfonso, Picon, Artzai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020841/ https://www.ncbi.nlm.nih.gov/pubmed/33828896 http://dx.doi.org/10.4103/jpi.jpi_41_20 |
Ejemplares similares
-
Distribution Structure Learning Loss (DSLL) Based on Deep Metric Learning for Image Retrieval
por: Fan, Lili, et al.
Publicado: (2019) -
Metric Learning in Histopathological Image Classification: Opening the Black Box
por: Amato, Domenico, et al.
Publicado: (2023) -
MRI Deep Learning-Based Solution for Alzheimer’s Disease Prediction
por: Saratxaga, Cristina L., et al.
Publicado: (2021) -
Comparing Class-Aware and Pairwise Loss Functions for Deep Metric Learning in Wildlife Re-Identification †
por: Dlamini, Nkosikhona, et al.
Publicado: (2021) -
Analysis on the Characterization of Multiphoton Microscopy Images for Malignant Neoplastic Colon Lesion Detection under Deep Learning Methods
por: Terradillos, Elena, et al.
Publicado: (2021)