Cargando…
Rapid quantification of COVID-19 pneumonia burden from computed tomography with convolutional LSTM networks
Quantitative lung measures derived from computed tomography (CT) have been demonstrated to improve prognostication in Coronavirus disease 2019 (COVID-19) patients, but are not part of the clinical routine since required manual segmentation of lung lesions is prohibitively time-consuming. We propose...
Autores principales: | Grodecki, Kajetan, Killekar, Aditya, Lin, Andrew, Cadet, Sebastien, McElhinney, Priscilla, Razipour, Aryabod, Chan, Cato, Pressman, Barry D., Julien, Peter, Simon, Judit, Maurovich-Horvat, Pal, Gaibazzi, Nicola, Thakur, Udit, Mancini, Elisabetta, Agalbato, Cecilia, Munechika, Jiro, Matsumoto, Hidenari, Menè, Roberto, Parati, Gianfranco, Cernigliaro, Franco, Nerlekar, Nitesh, Torlasco, Camilla, Pontone, Gianluca, Dey, Damini, Slomka, Piotr J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020980/ https://www.ncbi.nlm.nih.gov/pubmed/33821209 |
Ejemplares similares
-
Rapid quantification of COVID-19 pneumonia burden from computed tomography with convolutional long short-term memory networks
por: Killekar, Aditya, et al.
Publicado: (2022) -
Quantitative Burden of COVID-19 Pneumonia on Chest CT Predicts Adverse Outcomes: A Post-Hoc Analysis of a Prospective International Registry
por: Grodecki, Kajetan, et al.
Publicado: (2020) -
Epicardial adipose tissue is associated with extent of pneumonia and adverse outcomes in patients with COVID-19
por: Grodecki, Kajetan, et al.
Publicado: (2021) -
Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study
por: Lin, Andrew, et al.
Publicado: (2021) -
Radiomorphological signs and clinical severity of SARS-CoV-2 lineage B.1.1.7
por: Simon, Judit, et al.
Publicado: (2022)