Cargando…
Deep learning classification of lipid droplets in quantitative phase images
We report the application of supervised machine learning to the automated classification of lipid droplets in label-free, quantitative-phase images. By comparing various machine learning methods commonly used in biomedical imaging and remote sensing, we found convolutional neural networks to outperf...
Autores principales: | Sheneman, Luke, Stephanopoulos, Gregory, Vasdekis, Andreas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021159/ https://www.ncbi.nlm.nih.gov/pubmed/33819277 http://dx.doi.org/10.1371/journal.pone.0249196 |
Ejemplares similares
-
Exploiting Bioprocessing Fluctuations to Elicit the Mechanistics of De Novo Lipogenesis in Yarrowia lipolytica
por: Vasdekis, Andreas E., et al.
Publicado: (2017) -
Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging
por: Vasdekis, A. E., et al.
Publicado: (2019) -
Integrative quantitative-phase and airy light-sheet imaging
por: Subedi, N. R., et al.
Publicado: (2020) -
Origins of Cell-to-Cell Bioprocessing Diversity and Implications of the Extracellular Environment Revealed at the Single-Cell Level
por: Vasdekis, A. E., et al.
Publicado: (2015) -
Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus
por: Lee, Young Suh, et al.
Publicado: (2023)