Cargando…
COVID-19 prediction using LSTM algorithm: GCC case study
Coronavirus-19 (COVID-19) is the black swan of 2020. Still, the human response to restrain the virus is also creating massive ripples through different systems, such as health, economy, education, and tourism. This paper focuses on research and applying Artificial Intelligence (AI) algorithms to pre...
Autores principales: | Ghany, Kareem Kamal A., Zawbaa, Hossam M., Sabri, Heba M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021451/ https://www.ncbi.nlm.nih.gov/pubmed/33842686 http://dx.doi.org/10.1016/j.imu.2021.100566 |
Ejemplares similares
-
Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms
por: Luo, Junling, et al.
Publicado: (2021) -
Weather Conditions and COVID-19 Cases: Insights from the GCC Countries
por: Abu-Abdoun, Dana I., et al.
Publicado: (2022) -
Novel Prediction Model for COVID-19 in Saudi Arabia Based on an LSTM Algorithm
por: Alkhammash, Eman H., et al.
Publicado: (2021) -
The definitive guide to GCC
por: Wall, Kurt, et al.
Publicado: (2004) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020)