Cargando…
Real-World Data for Planning Eligibility Criteria and Enhancing Recruitment: Recommendations from the Clinical Trials Transformation Initiative
The growing availability of real-world data (RWD) creates opportunities for new evidence generation and improved efficiency across the research enterprise. To varying degrees, sponsors now regularly use RWD to make data-driven decisions about trial feasibility, based on assessment of eligibility cri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021522/ https://www.ncbi.nlm.nih.gov/pubmed/33393014 http://dx.doi.org/10.1007/s43441-020-00248-7 |
Sumario: | The growing availability of real-world data (RWD) creates opportunities for new evidence generation and improved efficiency across the research enterprise. To varying degrees, sponsors now regularly use RWD to make data-driven decisions about trial feasibility, based on assessment of eligibility criteria for planned clinical trials. Increasingly, RWD are being used to support targeted, timely, and personalized outreach to potential trial participants that may improve the efficiency and effectiveness of the recruitment process. This paper highlights recommendations and resources, including specific case studies, developed by the Clinical Trials Transformation Initiative (CTTI) for applying RWD to planning eligibility criteria and recruiting for clinical trials. Developed through a multi-stakeholder, consensus- and evidence-driven process, these actionable tools support researchers in (1) determining whether RWD are fit for purpose with respect to study planning and recruitment, (2) engaging cross-functional teams in the use of RWD for study planning and recruitment, and (3) understanding patient and site needs to develop successful and patient-centric approaches to RWD-supported recruitment. Future considerations for the use of RWD are explored, including ensuring full patient understanding of data use and developing global datasets. |
---|