Cargando…

Microcoulomb (0.7 ± [Formula: see text] μC) laser plasma accelerator on OMEGA EP

Laser-plasma accelerators (LPAs) driven by picosecond-scale, kilojoule-class lasers can generate particle beams and x-ray sources that could be utilized in experiments driven by multi-kilojoule, high-energy-density science (HEDS) drivers such as the OMEGA laser at the Laboratory for Laser Energetics...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaw, J. L., Romo-Gonzalez, M. A., Lemos, N., King, P. M., Bruhaug, G., Miller, K. G., Dorrer, C., Kruschwitz, B., Waxer, L., Williams, G. J., Ambat, M. V., McKie, M. M., Sinclair, M. D., Mori, W. B., Joshi, C., Chen, Hui, Palastro, J. P., Albert, F., Froula, D. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021563/
https://www.ncbi.nlm.nih.gov/pubmed/33820945
http://dx.doi.org/10.1038/s41598-021-86523-5
Descripción
Sumario:Laser-plasma accelerators (LPAs) driven by picosecond-scale, kilojoule-class lasers can generate particle beams and x-ray sources that could be utilized in experiments driven by multi-kilojoule, high-energy-density science (HEDS) drivers such as the OMEGA laser at the Laboratory for Laser Energetics (LLE) or the National Ignition Facility at Lawrence Livermore National Laboratory. This paper reports on the development of the first LPA driven by a short-pulse, kilojoule-class laser (OMEGA EP) connected to a multi-kilojoule HEDS driver (OMEGA). In experiments, electron beams were produced with electron energies greater than 200 MeV, divergences as low as 32 mrad, charge greater than 700 nC, and conversion efficiencies from laser energy to electron energy up to 11%. The electron beam charge scales with both the normalized vector potential and plasma density. These electron beams show promise as a method to generate MeV-class radiography sources and improved-flux broadband x-ray sources at HEDS drivers.