Cargando…
DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
Single-cell RNA sequencing (scRNA-seq) data provides unprecedented information on cell fate decisions; however, the spatial arrangement of cells is often lost. Several recent computational methods have been developed to impute spatial information onto a scRNA-seq dataset through analyzing known spat...
Autores principales: | Maseda, Floyd, Cang, Zixuan, Nie, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021700/ https://www.ncbi.nlm.nih.gov/pubmed/33833776 http://dx.doi.org/10.3389/fgene.2021.636743 |
Ejemplares similares
-
ECAL DeepSC: Optimization of the DeepSC model inference strategy for reconstruction speedup
por: CMS Collaboration
Publicado: (2022) -
ECAL DeepSC Particle ID
por: CMS Collaboration
Publicado: (2022) -
Inferring spatial and signaling relationships between cells from single cell transcriptomic data
por: Cang, Zixuan, et al.
Publicado: (2020) -
SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models
por: Gao, Dalong, et al.
Publicado: (2022) -
Deciphering tissue structure and function using spatial transcriptomics
por: Walker, Benjamin L., et al.
Publicado: (2022)