Cargando…
Development of Neuromonitoring Pedicle Screw - Results of Electrical Resistance and Neurophysiologic Test in Pig Model
OBJECTIVE: To analyze the electrical resistance of a newly developed neuromonitoring pedicle screw (Neuro-PS) and to verify the electrophysiologic properties of the Neuro-PS in a pig model. METHODS: We developed 2 types of the Neuro-PS in which a gold lead was located internally (type I) and externa...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Spinal Neurosurgery Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021819/ https://www.ncbi.nlm.nih.gov/pubmed/33211943 http://dx.doi.org/10.14245/ns.2040424.212 |
Sumario: | OBJECTIVE: To analyze the electrical resistance of a newly developed neuromonitoring pedicle screw (Neuro-PS) and to verify the electrophysiologic properties of the Neuro-PS in a pig model. METHODS: We developed 2 types of the Neuro-PS in which a gold lead was located internally (type I) and externally (type II). We measured the electrical resistance of the Neuro-PS and the conventional screw and analyzed the electrical thresholds of triggered EMG (t-EMG) of each screw by intentionally penetrating the medial pedicle wall and contacting the exiting nerve root in a pig model. RESULTS: The electrical resistances of the Neuro-PS were remarkably lower than that of the conventional screw. In electrophysiologic testing, only the type II Neuro-PS under the leadnerve contact condition showed a significantly lower stimulation threshold as compared to the conventional screw. CONCLUSION: The Neuro-PS demonstrated lower electrical resistances than the conventional screw. The type II Neuro-PS under the lead-nerve contact condition showed a significantly lower stimulation threshold compared to that of the other screws in the t-EMG test. |
---|