Cargando…
A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology performed at the level of an individual cell, which can have a potential to understand cellular heterogeneity. However, scRNA-seq data are high-dimensional, noisy, and sparse data. Dimension reduction is an important s...
Autores principales: | Xiang, Ruizhi, Wang, Wencan, Yang, Lei, Wang, Shiyuan, Xu, Chaohan, Chen, Xiaowen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021860/ https://www.ncbi.nlm.nih.gov/pubmed/33833778 http://dx.doi.org/10.3389/fgene.2021.646936 |
Ejemplares similares
-
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
Context-Specific Coordinately Regulatory Network Prioritize Breast Cancer Genetic Risk Factors
por: Wang, Shuyuan, et al.
Publicado: (2020) -
NeuralEE: A GPU-Accelerated Elastic Embedding Dimensionality Reduction Method for Visualizing Large-Scale scRNA-Seq Data
por: Xiong, Jiankang, et al.
Publicado: (2020) -
Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
por: Lytal, Nicholas, et al.
Publicado: (2020) -
Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data
por: Bushel, Pierre R., et al.
Publicado: (2020)