Cargando…
Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy
BACKGROUND: Radiotherapy for head and neck cancer may cause various oral sequelae, such as radiation-induced mucositis. To protect healthy tissue from irradiation, intraoral devices can be used. Current tissue retraction devices (TRDs) have to be either individually manufactured at considerable cost...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021903/ https://www.ncbi.nlm.nih.gov/pubmed/33833988 http://dx.doi.org/10.3389/fonc.2021.628743 |
_version_ | 1783674832491118592 |
---|---|
author | Herpel, Christopher Schwindling, Franz Sebastian Held, Thomas Christ, Leo Lang, Kristin Schwindling, Martha Moratin, Julius Zaoui, Karim Moutsis, Tracy Plinkert, Peter Herfarth, Klaus Freudlsperger, Christian Rammelsberg, Peter Debus, Jürgen Adeberg, Sebastian |
author_facet | Herpel, Christopher Schwindling, Franz Sebastian Held, Thomas Christ, Leo Lang, Kristin Schwindling, Martha Moratin, Julius Zaoui, Karim Moutsis, Tracy Plinkert, Peter Herfarth, Klaus Freudlsperger, Christian Rammelsberg, Peter Debus, Jürgen Adeberg, Sebastian |
author_sort | Herpel, Christopher |
collection | PubMed |
description | BACKGROUND: Radiotherapy for head and neck cancer may cause various oral sequelae, such as radiation-induced mucositis. To protect healthy tissue from irradiation, intraoral devices can be used. Current tissue retraction devices (TRDs) have to be either individually manufactured at considerable cost and time expenditure or they are limited in their variability. In this context, a 3D-printed, tooth-borne TRD might further facilitate clinical use. METHODS: A novel approach for the manufacturing of TRDs is described and its clinical application is analysed retrospectively. The devices were virtually designed for fabrication by 3D-printing technology, enabling—in only a single printing design—caudal or bi-lateral tongue displacement, as well as stabilization of a tongue-out position. For a total of 10 patients undergoing radiotherapy of head and neck tumors, the devices were individually adapted after pre-fabrication. Technical and clinical feasibility was assessed along with patient adherence. Tissue spacing was calculated by volumetric analysis of tongue retraction. In one exemplary case, radiotherapy treatment plans before and after tissue displacement were generated and compared. The reproducibility of maxillomandibular relation at device re-positioning was quantified by repeated intraoral optical scanning in a voluntary participant. RESULTS: 3D-printing was useful for the simplification of TRD manufacture, resulting in a total patient treatment time of less than 30 min. The devices were tolerated well by all tested patients over the entire radiation treatment period. No technical complications occurred with the devices. The TRDs caused an effective spacing of the healthy adjacent tissue, e.g., the tongue. Position changes of maxillomandibular relation were limited to a mean value of 98.1 µm ± 29.4 µm root mean square deviation between initial reference and follow-up positions. CONCLUSIONS: The presented method allows a resource-efficient fabrication of individualized, tooth-bourne TRDs. A high reproducibility of maxillomandibular relation was found and the first clinical experiences underline the high potential of such devices for radiotherapy in the head and neck area. |
format | Online Article Text |
id | pubmed-8021903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80219032021-04-07 Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy Herpel, Christopher Schwindling, Franz Sebastian Held, Thomas Christ, Leo Lang, Kristin Schwindling, Martha Moratin, Julius Zaoui, Karim Moutsis, Tracy Plinkert, Peter Herfarth, Klaus Freudlsperger, Christian Rammelsberg, Peter Debus, Jürgen Adeberg, Sebastian Front Oncol Oncology BACKGROUND: Radiotherapy for head and neck cancer may cause various oral sequelae, such as radiation-induced mucositis. To protect healthy tissue from irradiation, intraoral devices can be used. Current tissue retraction devices (TRDs) have to be either individually manufactured at considerable cost and time expenditure or they are limited in their variability. In this context, a 3D-printed, tooth-borne TRD might further facilitate clinical use. METHODS: A novel approach for the manufacturing of TRDs is described and its clinical application is analysed retrospectively. The devices were virtually designed for fabrication by 3D-printing technology, enabling—in only a single printing design—caudal or bi-lateral tongue displacement, as well as stabilization of a tongue-out position. For a total of 10 patients undergoing radiotherapy of head and neck tumors, the devices were individually adapted after pre-fabrication. Technical and clinical feasibility was assessed along with patient adherence. Tissue spacing was calculated by volumetric analysis of tongue retraction. In one exemplary case, radiotherapy treatment plans before and after tissue displacement were generated and compared. The reproducibility of maxillomandibular relation at device re-positioning was quantified by repeated intraoral optical scanning in a voluntary participant. RESULTS: 3D-printing was useful for the simplification of TRD manufacture, resulting in a total patient treatment time of less than 30 min. The devices were tolerated well by all tested patients over the entire radiation treatment period. No technical complications occurred with the devices. The TRDs caused an effective spacing of the healthy adjacent tissue, e.g., the tongue. Position changes of maxillomandibular relation were limited to a mean value of 98.1 µm ± 29.4 µm root mean square deviation between initial reference and follow-up positions. CONCLUSIONS: The presented method allows a resource-efficient fabrication of individualized, tooth-bourne TRDs. A high reproducibility of maxillomandibular relation was found and the first clinical experiences underline the high potential of such devices for radiotherapy in the head and neck area. Frontiers Media S.A. 2021-03-23 /pmc/articles/PMC8021903/ /pubmed/33833988 http://dx.doi.org/10.3389/fonc.2021.628743 Text en Copyright © 2021 Herpel, Schwindling, Held, Christ, Lang, Schwindling, Moratin, Zaoui, Moutsis, Plinkert, Herfarth, Freudlsperger, Rammelsberg, Debus and Adeberg http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Herpel, Christopher Schwindling, Franz Sebastian Held, Thomas Christ, Leo Lang, Kristin Schwindling, Martha Moratin, Julius Zaoui, Karim Moutsis, Tracy Plinkert, Peter Herfarth, Klaus Freudlsperger, Christian Rammelsberg, Peter Debus, Jürgen Adeberg, Sebastian Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title | Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title_full | Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title_fullStr | Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title_full_unstemmed | Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title_short | Individualized 3D-Printed Tissue Retraction Devices for Head and Neck Radiotherapy |
title_sort | individualized 3d-printed tissue retraction devices for head and neck radiotherapy |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021903/ https://www.ncbi.nlm.nih.gov/pubmed/33833988 http://dx.doi.org/10.3389/fonc.2021.628743 |
work_keys_str_mv | AT herpelchristopher individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT schwindlingfranzsebastian individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT heldthomas individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT christleo individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT langkristin individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT schwindlingmartha individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT moratinjulius individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT zaouikarim individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT moutsistracy individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT plinkertpeter individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT herfarthklaus individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT freudlspergerchristian individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT rammelsbergpeter individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT debusjurgen individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy AT adebergsebastian individualized3dprintedtissueretractiondevicesforheadandneckradiotherapy |