Cargando…

mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection

[Image: see text] Proteomics studies rely on the accurate assignment of peptides to the acquired tandem mass spectra—a task where machine learning algorithms have proven invaluable. We describe mokapot, which provides a flexible semisupervised learning algorithm that allows for highly customized ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Fondrie, William E., Noble, William S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022319/
https://www.ncbi.nlm.nih.gov/pubmed/33596079
http://dx.doi.org/10.1021/acs.jproteome.0c01010
_version_ 1783674909825695744
author Fondrie, William E.
Noble, William S.
author_facet Fondrie, William E.
Noble, William S.
author_sort Fondrie, William E.
collection PubMed
description [Image: see text] Proteomics studies rely on the accurate assignment of peptides to the acquired tandem mass spectra—a task where machine learning algorithms have proven invaluable. We describe mokapot, which provides a flexible semisupervised learning algorithm that allows for highly customized analyses. We demonstrate some of the unique features of mokapot by improving the detection of RNA-cross-linked peptides from an analysis of RNA-binding proteins and increasing the consistency of peptide detection in a single-cell proteomics study.
format Online
Article
Text
id pubmed-8022319
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-80223192021-04-06 mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection Fondrie, William E. Noble, William S. J Proteome Res [Image: see text] Proteomics studies rely on the accurate assignment of peptides to the acquired tandem mass spectra—a task where machine learning algorithms have proven invaluable. We describe mokapot, which provides a flexible semisupervised learning algorithm that allows for highly customized analyses. We demonstrate some of the unique features of mokapot by improving the detection of RNA-cross-linked peptides from an analysis of RNA-binding proteins and increasing the consistency of peptide detection in a single-cell proteomics study. American Chemical Society 2021-02-17 2021-04-02 /pmc/articles/PMC8022319/ /pubmed/33596079 http://dx.doi.org/10.1021/acs.jproteome.0c01010 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Fondrie, William E.
Noble, William S.
mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title_full mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title_fullStr mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title_full_unstemmed mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title_short mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection
title_sort mokapot: fast and flexible semisupervised learning for peptide detection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022319/
https://www.ncbi.nlm.nih.gov/pubmed/33596079
http://dx.doi.org/10.1021/acs.jproteome.0c01010
work_keys_str_mv AT fondriewilliame mokapotfastandflexiblesemisupervisedlearningforpeptidedetection
AT noblewilliams mokapotfastandflexiblesemisupervisedlearningforpeptidedetection