Cargando…
Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
Data streams can be defined as the continuous stream of data coming from different sources and in different forms. Streams are often very dynamic, and its underlying structure usually changes over time, which may result to a phenomenon called concept drift. When solving predictive problems using the...
Autores principales: | Sarnovsky, Martin, Kolarik, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022634/ https://www.ncbi.nlm.nih.gov/pubmed/33834113 http://dx.doi.org/10.7717/peerj-cs.459 |
Ejemplares similares
-
An efficient approach for low latency processing in stream data
por: Bhatt, Nirav, et al.
Publicado: (2021) -
A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks
por: Kim, HyunJin, et al.
Publicado: (2022) -
Correct and stable sorting for overflow streaming data with a limited storage size and a uniprocessor
por: Chaikhan, Suluk, et al.
Publicado: (2021) -
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
por: Palatnik de Sousa, Iam
Publicado: (2018) -
Design of adaptive ensemble classifier for online sentiment analysis and opinion mining
por: Kumar, Sanjeev, et al.
Publicado: (2021)