Cargando…
Visualizing population structure with variational autoencoders
Dimensionality reduction is a common tool for visualization and inference of population structure from genotypes, but popular methods either return too many dimensions for easy plotting (PCA) or fail to preserve global geometry (t-SNE and UMAP). Here we explore the utility of variational autoencoder...
Autores principales: | Battey, C J, Coffing, Gabrielle C, Kern, Andrew D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022710/ https://www.ncbi.nlm.nih.gov/pubmed/33561250 http://dx.doi.org/10.1093/g3journal/jkaa036 |
Ejemplares similares
-
Genomic Variation Among and Within Six Juglans Species
por: Stevens, Kristian A., et al.
Publicado: (2018) -
CDMAP/CDVIS: context-dependent mutation analysis package and visualization software
por: Patton, David L, et al.
Publicado: (2022) -
TheCellVision.org: A Database for Visualizing and Mining High-Content Cell Imaging Projects
por: Masinas, Myra Paz David, et al.
Publicado: (2020) -
A Deep Learning Approach for Detecting Copy Number Variation in Next-Generation Sequencing Data
por: Hill, Tom, et al.
Publicado: (2019) -
Testcrosses are an efficient strategy for identifying cis-regulatory variation: Bayesian analysis of allele-specific expression (BayesASE)
por: Miller, Brecca R, et al.
Publicado: (2021)