Cargando…
De novo assembly of a chromosome-scale reference genome for the northern flicker Colaptes auratus
The northern flicker, Colaptes auratus, is a widely distributed North American woodpecker and a long-standing focal species for the study of ecology, behavior, phenotypic differentiation, and hybridization. We present here a highly contiguous de novo genome assembly of C. auratus, the first such ass...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022726/ https://www.ncbi.nlm.nih.gov/pubmed/33561233 http://dx.doi.org/10.1093/g3journal/jkaa026 |
Sumario: | The northern flicker, Colaptes auratus, is a widely distributed North American woodpecker and a long-standing focal species for the study of ecology, behavior, phenotypic differentiation, and hybridization. We present here a highly contiguous de novo genome assembly of C. auratus, the first such assembly for the species and the first published chromosome-level assembly for woodpeckers (Picidae). The assembly was generated using a combination of short-read Chromium 10× and long-read PacBio sequencing, and further scaffolded with chromatin conformation capture (Hi-C) reads. The resulting genome assembly is 1.378 Gb in size, with a scaffold N50 of 11 and a scaffold L50 of 43.948 Mb. This assembly contains 87.4–91.7% of genes present across four sets of universal single-copy orthologs found in tetrapods and birds. We annotated the assembly both for genes and repetitive content, identifying 18,745 genes and a prevalence of ∼28.0% repetitive elements. Lastly, we used fourfold degenerate sites from neutrally evolving genes to estimate a mutation rate for C. auratus, which we estimated to be 4.007 × 10(−9) substitutions/site/year, about 1.5× times faster than an earlier mutation rate estimate of the family. The highly contiguous assembly and annotations we report will serve as a resource for future studies on the genomics of C. auratus and comparative evolution of woodpeckers. |
---|