Cargando…

Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. However, little...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Xiaoyun, Yeh, Chun-Hung, Domínguez D., Juan F., Poudel, Govinda, Swinnen, Stephan P., Caeyenberghs, Karen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022866/
https://www.ncbi.nlm.nih.gov/pubmed/33780865
http://dx.doi.org/10.1016/j.nicl.2021.102621
_version_ 1783675020173639680
author Liang, Xiaoyun
Yeh, Chun-Hung
Domínguez D., Juan F.
Poudel, Govinda
Swinnen, Stephan P.
Caeyenberghs, Karen
author_facet Liang, Xiaoyun
Yeh, Chun-Hung
Domínguez D., Juan F.
Poudel, Govinda
Swinnen, Stephan P.
Caeyenberghs, Karen
author_sort Liang, Xiaoyun
collection PubMed
description BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. However, little attention has been devoted to uncovering the underlying white matter changes in response to training in TBI. In this study, we used longitudinal fixel-based analysis (FBA), an advanced diffusion imaging analysis technique, to investigate the effect of a balance training program on white matter fibre density and morphology in a group of young TBI patients. METHODS: Young patients with moderate-to-severe TBI (N = 17, 10 females, mean age = 13 ± 3 years) and age-matched controls (N = 17) underwent a home-based balance training program. Diffusion MRI scans together with gross motor assessments, including the gross motor items of the Bruininks-Oseretsky Test of Motor Proficiency, the Activities-Specific Balance Confidence (ABC) Scale, and the Sensory Organization Test (SOT) were administered before and at completion of 8-weeks of training. We used FBA to compare microstructural differences in fibre density (FD), macrostructural (morphological) changes in fibre cross-section (FC), and the combined FD and FC (FDC) metric across the whole brain. We then performed a longitudinal analysis to test whether training restores the white matter in the regions found to be damaged before treatment. RESULTS: Whole-brain fixel-based analysis revealed lower FD and FC in TBI patients compared to the control group across several commissural tracts, association fibres and projection fibres, with FD reductions of up to 50%. Following training, TBI patients showed a significant interaction effect between Group and Time for the SOT test, as well as significant increases in macrostructural white matter (i.e., FC & FDC) in left sensorimotor tracts. The amount of change in FC and FDC over time was, however, not associated with behavioural changes. DISCUSSION: Our fixel-based findings identified both microstructural and macrostructural abnormalities in young TBI patients. The longitudinal results provide a deeper understanding of the neurobiological mechanisms underlying balance training, which will allow clinicians to make more effective treatment decisions in everyday clinical practice with brain-injured patients.
format Online
Article
Text
id pubmed-8022866
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80228662021-04-12 Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients Liang, Xiaoyun Yeh, Chun-Hung Domínguez D., Juan F. Poudel, Govinda Swinnen, Stephan P. Caeyenberghs, Karen Neuroimage Clin Regular Article BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. However, little attention has been devoted to uncovering the underlying white matter changes in response to training in TBI. In this study, we used longitudinal fixel-based analysis (FBA), an advanced diffusion imaging analysis technique, to investigate the effect of a balance training program on white matter fibre density and morphology in a group of young TBI patients. METHODS: Young patients with moderate-to-severe TBI (N = 17, 10 females, mean age = 13 ± 3 years) and age-matched controls (N = 17) underwent a home-based balance training program. Diffusion MRI scans together with gross motor assessments, including the gross motor items of the Bruininks-Oseretsky Test of Motor Proficiency, the Activities-Specific Balance Confidence (ABC) Scale, and the Sensory Organization Test (SOT) were administered before and at completion of 8-weeks of training. We used FBA to compare microstructural differences in fibre density (FD), macrostructural (morphological) changes in fibre cross-section (FC), and the combined FD and FC (FDC) metric across the whole brain. We then performed a longitudinal analysis to test whether training restores the white matter in the regions found to be damaged before treatment. RESULTS: Whole-brain fixel-based analysis revealed lower FD and FC in TBI patients compared to the control group across several commissural tracts, association fibres and projection fibres, with FD reductions of up to 50%. Following training, TBI patients showed a significant interaction effect between Group and Time for the SOT test, as well as significant increases in macrostructural white matter (i.e., FC & FDC) in left sensorimotor tracts. The amount of change in FC and FDC over time was, however, not associated with behavioural changes. DISCUSSION: Our fixel-based findings identified both microstructural and macrostructural abnormalities in young TBI patients. The longitudinal results provide a deeper understanding of the neurobiological mechanisms underlying balance training, which will allow clinicians to make more effective treatment decisions in everyday clinical practice with brain-injured patients. Elsevier 2021-03-10 /pmc/articles/PMC8022866/ /pubmed/33780865 http://dx.doi.org/10.1016/j.nicl.2021.102621 Text en © 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Liang, Xiaoyun
Yeh, Chun-Hung
Domínguez D., Juan F.
Poudel, Govinda
Swinnen, Stephan P.
Caeyenberghs, Karen
Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title_full Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title_fullStr Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title_full_unstemmed Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title_short Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
title_sort longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022866/
https://www.ncbi.nlm.nih.gov/pubmed/33780865
http://dx.doi.org/10.1016/j.nicl.2021.102621
work_keys_str_mv AT liangxiaoyun longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients
AT yehchunhung longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients
AT dominguezdjuanf longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients
AT poudelgovinda longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients
AT swinnenstephanp longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients
AT caeyenberghskaren longitudinalfixelbasedanalysisrevealsrestorationofwhitematteralterationsfollowingbalancetraininginyoungbraininjuredpatients