Cargando…
Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023211/ https://www.ncbi.nlm.nih.gov/pubmed/33502451 http://dx.doi.org/10.1093/jxb/erab035 |
_version_ | 1783675086712078336 |
---|---|
author | Cuacos, Maria Lambing, Christophe Pachon-Penalba, Miguel Osman, Kim Armstrong, Susan J Henderson, Ian R Sanchez-Moran, Eugenio Franklin, F Christopher H Heckmann, Stefan |
author_facet | Cuacos, Maria Lambing, Christophe Pachon-Penalba, Miguel Osman, Kim Armstrong, Susan J Henderson, Ian R Sanchez-Moran, Eugenio Franklin, F Christopher H Heckmann, Stefan |
author_sort | Cuacos, Maria |
collection | PubMed |
description | Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes. |
format | Online Article Text |
id | pubmed-8023211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80232112021-04-09 Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa Cuacos, Maria Lambing, Christophe Pachon-Penalba, Miguel Osman, Kim Armstrong, Susan J Henderson, Ian R Sanchez-Moran, Eugenio Franklin, F Christopher H Heckmann, Stefan J Exp Bot Research Papers Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes. Oxford University Press 2021-01-27 /pmc/articles/PMC8023211/ /pubmed/33502451 http://dx.doi.org/10.1093/jxb/erab035 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Cuacos, Maria Lambing, Christophe Pachon-Penalba, Miguel Osman, Kim Armstrong, Susan J Henderson, Ian R Sanchez-Moran, Eugenio Franklin, F Christopher H Heckmann, Stefan Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title | Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title_full | Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title_fullStr | Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title_full_unstemmed | Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title_short | Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa |
title_sort | meiotic chromosome axis remodelling is critical for meiotic recombination in brassica rapa |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023211/ https://www.ncbi.nlm.nih.gov/pubmed/33502451 http://dx.doi.org/10.1093/jxb/erab035 |
work_keys_str_mv | AT cuacosmaria meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT lambingchristophe meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT pachonpenalbamiguel meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT osmankim meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT armstrongsusanj meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT hendersonianr meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT sanchezmoraneugenio meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT franklinfchristopherh meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa AT heckmannstefan meioticchromosomeaxisremodellingiscriticalformeioticrecombinationinbrassicarapa |