Cargando…
Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype
In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptom...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023468/ https://www.ncbi.nlm.nih.gov/pubmed/33822828 http://dx.doi.org/10.1371/journal.ppat.1009430 |
Sumario: | In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1β, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1β and IL-6 following Pf-iRBC stimulation compared to 4–6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581. |
---|