Cargando…
Multi-source fast transfer learning algorithm based on support vector machine
Knowledge in the source domain can be used in transfer learning to help train and classification tasks within the target domain with fewer available data sets. Therefore, given the situation where the target domain contains only a small number of available unlabeled data sets and multi-source domain...
Autores principales: | Gao, Peng, Wu, Weifei, Li, Jingmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023540/ https://www.ncbi.nlm.nih.gov/pubmed/34764591 http://dx.doi.org/10.1007/s10489-021-02194-9 |
Ejemplares similares
-
Multi-Source Deep Transfer Neural Network Algorithm
por: Li, Jingmei, et al.
Publicado: (2019) -
Multi-Source Selection Transfer Learning with Privacy-Preserving
por: Wu, Weifei
Publicado: (2022) -
Sleep Quality Detection Based on EEG Signals Using Transfer Support Vector Machine Algorithm
por: Wen, Wu
Publicado: (2021) -
Learning with Support Vector Machines
por: Campbell, Colin, et al.
Publicado: (2010) -
Support vector machines: optimization based theory, algorithms, and extensions
por: Deng, Naiyang, et al.
Publicado: (2013)