Cargando…
Charge-reversal nanomedicine based on black phosphorus for the development of A Novel photothermal therapy of oral cancer
Driven by the lifestyle habits of modern people, such as excessive smoking, drinking, and chewing betel nut and other cancer-causing foods, the incidence of oral cancer has increased sharply and has a trend of becoming younger. Given the current mainstream treatment means of surgical resection will...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023610/ https://www.ncbi.nlm.nih.gov/pubmed/33818230 http://dx.doi.org/10.1080/10717544.2021.1909176 |
Sumario: | Driven by the lifestyle habits of modern people, such as excessive smoking, drinking, and chewing betel nut and other cancer-causing foods, the incidence of oral cancer has increased sharply and has a trend of becoming younger. Given the current mainstream treatment means of surgical resection will cause serious damage to many oral organs, so that patients lose the ability to chew, speak, and so on, it is urgent to develop new oral cancer treatment methods. Based on the strong killing effect of photothermal therapy on exposed superficial tumors, we developed a pH-responsive charge reversal nanomedicine system for oral cancer which is a kind of classic superficial tumor. With excellent photothermal properties of polydopamine (PDA) modified black phosphorus nanosheets (BP NSs) as basal material, then used polyacrylamide hydrochloride-dimethylmaleic acid (PAH-DMMA) charge reversal system for further surface modification, which can be negatively charged at blood circulation, and become a positive surface charge in the tumor site weakly acidic conditions due to the breaking of dimethylmaleic amide. Therefore, the uptake of oral cancer cells was enhanced and the therapeutic effect was improved. It can be proved that this nanomedicine has excellent photothermal properties and tumor enrichment ability, as well as a good killing effect on oral cancer cells through in vitro cytotoxicity test and in vivo photothermal test, which may become a very promising new model of oral cancer treatment. |
---|