Cargando…
How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center
[Image: see text] Protein-embedded chromophores are responsible for light harvesting, excitation energy transfer, and charge separation in photosynthesis. A critical part of the photosynthetic apparatus are reaction centers (RCs), which comprise groups of (bacterio)chlorophyll and (bacterio)pheophyt...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023663/ https://www.ncbi.nlm.nih.gov/pubmed/33566610 http://dx.doi.org/10.1021/acs.jctc.0c01152 |
_version_ | 1783675155909705728 |
---|---|
author | Sirohiwal, Abhishek Neese, Frank Pantazis, Dimitrios A. |
author_facet | Sirohiwal, Abhishek Neese, Frank Pantazis, Dimitrios A. |
author_sort | Sirohiwal, Abhishek |
collection | PubMed |
description | [Image: see text] Protein-embedded chromophores are responsible for light harvesting, excitation energy transfer, and charge separation in photosynthesis. A critical part of the photosynthetic apparatus are reaction centers (RCs), which comprise groups of (bacterio)chlorophyll and (bacterio)pheophytin molecules that transform the excitation energy derived from light absorption into charge separation. The lowest excitation energies of individual pigments (site energies) are key for understanding photosynthetic systems, and form a prime target for quantum chemistry. A major theoretical challenge is to accurately describe the electrochromic (Stark) shifts in site energies produced by the inhomogeneous electric field of the protein matrix. Here, we present large-scale quantum mechanics/molecular mechanics calculations of electrochromic shifts for the RC chromophores of photosystem II (PSII) using various quantum chemical methods evaluated against the domain-based local pair natural orbital (DLPNO) implementation of the similarity-transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD). We show that certain range-separated density functionals (ωΒ97, ωΒ97X-V, ωΒ2PLYP, and LC-BLYP) correctly reproduce RC site energy shifts with time-dependent density functional theory (TD-DFT). The popular CAM-B3LYP functional underestimates the shifts and is not recommended. Global hybrid functionals are too insensitive to the environment and should be avoided, while nonhybrid functionals are strictly nonapplicable. Among the applicable approximate coupled cluster methods, the canonical versions of CC2 and ADC(2) were found to deviate significantly from the reference results both for the description of the lowest excited state and for the electrochromic shifts. By contrast, their spin-component-scaled (SCS) and particularly the scale-opposite-spin (SOS) variants compare well with the reference DLPNO-STEOM-CCSD and the best range-separated DFT methods. The emergence of RC excitation asymmetry is discussed in terms of intrinsic and protein electrostatic potentials. In addition, we evaluate a minimal structural scaffold of PSII, the D1–D2–Cyt(B559) RC complex often employed in experimental studies, and show that it would have the same site energy distribution of RC chromophores as the full PSII supercomplex, but only under the unlikely conditions that the core protein organization and cofactor arrangement remain identical to those of the intact enzyme. |
format | Online Article Text |
id | pubmed-8023663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80236632021-04-07 How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center Sirohiwal, Abhishek Neese, Frank Pantazis, Dimitrios A. J Chem Theory Comput [Image: see text] Protein-embedded chromophores are responsible for light harvesting, excitation energy transfer, and charge separation in photosynthesis. A critical part of the photosynthetic apparatus are reaction centers (RCs), which comprise groups of (bacterio)chlorophyll and (bacterio)pheophytin molecules that transform the excitation energy derived from light absorption into charge separation. The lowest excitation energies of individual pigments (site energies) are key for understanding photosynthetic systems, and form a prime target for quantum chemistry. A major theoretical challenge is to accurately describe the electrochromic (Stark) shifts in site energies produced by the inhomogeneous electric field of the protein matrix. Here, we present large-scale quantum mechanics/molecular mechanics calculations of electrochromic shifts for the RC chromophores of photosystem II (PSII) using various quantum chemical methods evaluated against the domain-based local pair natural orbital (DLPNO) implementation of the similarity-transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD). We show that certain range-separated density functionals (ωΒ97, ωΒ97X-V, ωΒ2PLYP, and LC-BLYP) correctly reproduce RC site energy shifts with time-dependent density functional theory (TD-DFT). The popular CAM-B3LYP functional underestimates the shifts and is not recommended. Global hybrid functionals are too insensitive to the environment and should be avoided, while nonhybrid functionals are strictly nonapplicable. Among the applicable approximate coupled cluster methods, the canonical versions of CC2 and ADC(2) were found to deviate significantly from the reference results both for the description of the lowest excited state and for the electrochromic shifts. By contrast, their spin-component-scaled (SCS) and particularly the scale-opposite-spin (SOS) variants compare well with the reference DLPNO-STEOM-CCSD and the best range-separated DFT methods. The emergence of RC excitation asymmetry is discussed in terms of intrinsic and protein electrostatic potentials. In addition, we evaluate a minimal structural scaffold of PSII, the D1–D2–Cyt(B559) RC complex often employed in experimental studies, and show that it would have the same site energy distribution of RC chromophores as the full PSII supercomplex, but only under the unlikely conditions that the core protein organization and cofactor arrangement remain identical to those of the intact enzyme. American Chemical Society 2021-02-10 2021-03-09 /pmc/articles/PMC8023663/ /pubmed/33566610 http://dx.doi.org/10.1021/acs.jctc.0c01152 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Sirohiwal, Abhishek Neese, Frank Pantazis, Dimitrios A. How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title | How Can We Predict Accurate Electrochromic Shifts
for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title_full | How Can We Predict Accurate Electrochromic Shifts
for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title_fullStr | How Can We Predict Accurate Electrochromic Shifts
for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title_full_unstemmed | How Can We Predict Accurate Electrochromic Shifts
for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title_short | How Can We Predict Accurate Electrochromic Shifts
for Biochromophores? A Case Study on the Photosynthetic Reaction Center |
title_sort | how can we predict accurate electrochromic shifts
for biochromophores? a case study on the photosynthetic reaction center |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023663/ https://www.ncbi.nlm.nih.gov/pubmed/33566610 http://dx.doi.org/10.1021/acs.jctc.0c01152 |
work_keys_str_mv | AT sirohiwalabhishek howcanwepredictaccurateelectrochromicshiftsforbiochromophoresacasestudyonthephotosyntheticreactioncenter AT neesefrank howcanwepredictaccurateelectrochromicshiftsforbiochromophoresacasestudyonthephotosyntheticreactioncenter AT pantazisdimitriosa howcanwepredictaccurateelectrochromicshiftsforbiochromophoresacasestudyonthephotosyntheticreactioncenter |