Cargando…
Optimizing Residual Networks and VGG for Classification of EEG Signals: Identifying Ideal Channels for Emotion Recognition
Emotion is a crucial aspect of human health, and emotion recognition systems serve important roles in the development of neurofeedback applications. Most of the emotion recognition methods proposed in previous research take predefined EEG features as input to the classification algorithms. This pape...
Autores principales: | Cheah, Kit Hwa, Nisar, Humaira, Yap, Vooi Voon, Lee, Chen-Yi, Sinha, G. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024101/ https://www.ncbi.nlm.nih.gov/pubmed/33859808 http://dx.doi.org/10.1155/2021/5599615 |
Ejemplares similares
-
Exploring the Effects of EEG-Based Alpha Neurofeedback on Working Memory Capacity in Healthy Participants
por: Nawaz, Rab, et al.
Publicado: (2023) -
Multi-channel EEG emotion recognition through residual graph attention neural network
por: Chao, Hao, et al.
Publicado: (2023) -
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
por: Sengupta, Abhronil, et al.
Publicado: (2019) -
VGG16-random fourier hybrid model for masked face recognition
por: Sikha, O. K., et al.
Publicado: (2022) -
Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification
por: Alshammari, Abdulaziz
Publicado: (2022)