Cargando…
Safety in the practice of decontaminating filtering facepiece respirators: A systematic review
BACKGROUND: Considering the new SARS-CoV-2 pandemic and the potential scarcity of material resources, the reuse of personal protective equipment such as filtering facepiece respirators (FFRs) for N95 filtering or higher is being discussed, mainly regarding the effectiveness and safety of cleaning, d...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024221/ https://www.ncbi.nlm.nih.gov/pubmed/33279587 http://dx.doi.org/10.1016/j.ajic.2020.11.022 |
Sumario: | BACKGROUND: Considering the new SARS-CoV-2 pandemic and the potential scarcity of material resources, the reuse of personal protective equipment such as filtering facepiece respirators (FFRs) for N95 filtering or higher is being discussed, mainly regarding the effectiveness and safety of cleaning, disinfection and sterilization processes. AIM: To analyze the available evidence in the literature on the safety in processing FFRs. METHODS: A systematic review conducted by searching for studies in the following databases: PubMed, CINAHL, LILACS, CENTRAL, EMBASE, Web of Science, and Scopus. RESULTS: Forty studies were included in this review. The disinfectant/sterilizing agents most frequently tested at different concentrations and exposure periods were ultraviolet irradiation, vaporized hydrogen peroxide and steam sterilization. Microbial reduction was assessed in 21 (52.5%) studies. The only disinfectants/sterilizers that did not caused degradation of the material-integrity were alcohol, electric cooker, ethylene oxide, and peracetic acid fogging. Exposure to ultraviolet irradiation or microwave generated-steam resulted in a nonsignificant reduction in filter performance. CONCLUSION: There is a complex relationship between the FFR raw materials and the cycle conditions of the decontamination methods, evidencing the need for validating FFRs by models and manufacturers, as well as the process. Some methods may require additional tests to demonstrate the safety of FFRs for use due to toxicity. |
---|