Cargando…
Limits to visual representational correspondence between convolutional neural networks and the human brain
Convolutional neural networks (CNNs) are increasingly used to model human vision due to their high object categorization capabilities and general correspondence with human brain responses. Here we evaluate the performance of 14 different CNNs compared with human fMRI responses to natural and artific...
Autores principales: | Xu, Yaoda, Vaziri-Pashkam, Maryam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024324/ https://www.ncbi.nlm.nih.gov/pubmed/33824315 http://dx.doi.org/10.1038/s41467-021-22244-7 |
Ejemplares similares
-
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021) -
Representing Multiple Visual Objects in the Human Brain and Convolutional Neural Networks
por: Mocz, Viola, et al.
Publicado: (2023) -
Multiple visual objects are represented differently in the human brain and convolutional neural networks
por: Mocz, Viola, et al.
Publicado: (2023) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022) -
Joint representation of color and form in convolutional neural networks: A stimulus-rich network perspective
por: Taylor, JohnMark, et al.
Publicado: (2021)