Cargando…

Shift Toward Randomness in Brain Networks of Patients With Anorexia Nervosa: The Role of Malnutrition

No study to date investigated structural white matter (WM) connectome characteristics in patients with anorexia nervosa (AN). Previous research in AN found evidence of imbalances in global and regional connectomic brain architecture and highlighted a role of malnutrition in determining structural br...

Descripción completa

Detalles Bibliográficos
Autores principales: Collantoni, Enrico, Meneguzzo, Paolo, Tenconi, Elena, Meregalli, Valentina, Manara, Renzo, Favaro, Angela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024518/
https://www.ncbi.nlm.nih.gov/pubmed/33841085
http://dx.doi.org/10.3389/fnins.2021.645139
Descripción
Sumario:No study to date investigated structural white matter (WM) connectome characteristics in patients with anorexia nervosa (AN). Previous research in AN found evidence of imbalances in global and regional connectomic brain architecture and highlighted a role of malnutrition in determining structural brain changes. The aim of our study was to explore the characteristics of the WM network architecture in a sample of patients with AN. Thirty-six patients with AN and 36 healthy women underwent magnetic resonance imaging to obtain a high-resolution three-dimensional T1-weighted anatomical image and a diffusion tensor imaging scan. Probabilistic tractography data were extracted and analyzed in their network properties through graph theory tools. In comparison to healthy women, patients with AN showed lower global network segregation (normalized clustering: p = 0.029), an imbalance between global network integration and segregation (i.e., lower small-worldness: p = 0.031), and the loss of some of the most integrative and influential hubs. Both clustering and small-worldness correlated with the lowest lifetime body mass index. A significant relationship was found between the average regional loss of cortical volume and changes in network properties of brain nodes: the more the difference in the cortical volume of brain areas, the more the increase in the centrality of corresponding nodes in the whole brain, and the decrease in clustering and efficiency of the nodes of parietal cortex. Our findings showed an unbalanced connectome wiring in AN patients, which seems to be influenced by malnutrition and loss of cortical volume. The role of this rearrangement in the maintenance and prognosis of AN and its reversibility with clinical improvement needs to be established by future studies.