Cargando…
Transferred Subspace Learning Based on Non-negative Matrix Factorization for EEG Signal Classification
EEG signal classification has been a research hotspot recently. The combination of EEG signal classification with machine learning technology is very popular. Traditional machine leaning methods for EEG signal classification assume that the EEG signals are drawn from the same distribution. However,...
Autores principales: | Dong, Aimei, Li, Zhigang, Zheng, Qiuyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024531/ https://www.ncbi.nlm.nih.gov/pubmed/33841089 http://dx.doi.org/10.3389/fnins.2021.647393 |
Ejemplares similares
-
A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling
por: Blum, Sarah, et al.
Publicado: (2019) -
Improving EEG-Based Emotion Classification Using Conditional Transfer Learning
por: Lin, Yuan-Pin, et al.
Publicado: (2017) -
Identification of Epileptic EEG Signals Through TSK Transfer Learning Fuzzy System
por: Zheng, Zhaoliang, et al.
Publicado: (2021) -
Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals
por: Zhang, Hongyi, et al.
Publicado: (2020) -
Extended Averaged Learning Subspace Method for Hyperspectral Data Classification
por: Bagan, Hasi, et al.
Publicado: (2009)