Cargando…
In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole
Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024662/ https://www.ncbi.nlm.nih.gov/pubmed/33851133 http://dx.doi.org/10.1016/j.ijpx.2021.100076 |
_version_ | 1783675355991638016 |
---|---|
author | Bachmaier, Rafael D. Monschke, Marius Faber, Thilo Krome, Anna K. Pellequer, Yann Stoyanov, Edmont Lamprecht, Alf Wagner, Karl G. |
author_facet | Bachmaier, Rafael D. Monschke, Marius Faber, Thilo Krome, Anna K. Pellequer, Yann Stoyanov, Edmont Lamprecht, Alf Wagner, Karl G. |
author_sort | Bachmaier, Rafael D. |
collection | PubMed |
description | Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC. |
format | Online Article Text |
id | pubmed-8024662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80246622021-04-12 In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole Bachmaier, Rafael D. Monschke, Marius Faber, Thilo Krome, Anna K. Pellequer, Yann Stoyanov, Edmont Lamprecht, Alf Wagner, Karl G. Int J Pharm X Research Paper Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC. Elsevier 2021-03-17 /pmc/articles/PMC8024662/ /pubmed/33851133 http://dx.doi.org/10.1016/j.ijpx.2021.100076 Text en © 2021 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Paper Bachmaier, Rafael D. Monschke, Marius Faber, Thilo Krome, Anna K. Pellequer, Yann Stoyanov, Edmont Lamprecht, Alf Wagner, Karl G. In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title | In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title_full | In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title_fullStr | In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title_full_unstemmed | In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title_short | In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
title_sort | in vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024662/ https://www.ncbi.nlm.nih.gov/pubmed/33851133 http://dx.doi.org/10.1016/j.ijpx.2021.100076 |
work_keys_str_mv | AT bachmaierrafaeld invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT monschkemarius invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT faberthilo invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT kromeannak invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT pellequeryann invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT stoyanovedmont invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT lamprechtalf invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole AT wagnerkarlg invitroandinvivoassessmentofhydroxypropylcelluloseasfunctionaladditiveforenablingformulationscontainingitraconazole |