Cargando…
A novel prognostic mRNA/miRNA signature for esophageal cancer and its immune landscape in cancer progression
Mounting evidence shows that MicroRNAs (miRNAs) and their target genes are aberrantly expressed in many cancers and are linked to tumor occurrence and progression, especially in esophageal cancer (EC). This study purposed to explore new biomarkers related to the prognosis of EC and to uncover their...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024720/ https://www.ncbi.nlm.nih.gov/pubmed/33463006 http://dx.doi.org/10.1002/1878-0261.12902 |
Sumario: | Mounting evidence shows that MicroRNAs (miRNAs) and their target genes are aberrantly expressed in many cancers and are linked to tumor occurrence and progression, especially in esophageal cancer (EC). This study purposed to explore new biomarkers related to the prognosis of EC and to uncover their potential mechanisms in promoting tumor progression. We identified 162 differentially expressed miRNAs and 4555 differentially expressed mRNAs in EC. Then, a risk model involving three miRNAs (miR‐4521, miR‐3682‐3p, and miR‐1269a) was designed to predict prognosis in EC patients. Furthermore, 7 target genes (Rho GTPase‐activating protein 24, Chromobox 3, Contactin‐associated protein 2, ELOVL fatty acid elongase 5, LIF receptor subunit alpha, transmembrane protein 44, and transmembrane protein 67) were selected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to reveal their potential mechanisms in promoting EC progression. After a series of correlation analyses, miRNA target genes were found to be significantly positively or negatively associated with immune infiltration, tumor microenvironment, cancer stemness properties, and tumor mutation burden at different degrees in EC. To further elucidate the role of miRNA signature in cancer progression, we performed a pan‐cancer analysis to determine whether these genes exert similar effects on other tumors. Interestingly, the miRNA target genes altered expression on tumor immunity; however, pan‐cancer progression was the same as that of EC. Thus, we explored the immune landscape of the miRNA signature and its target genes in EC and pan‐cancer. These findings demonstrated the versatility and effectiveness of our model in various cancers and provided a new direction for cancer management. |
---|