Cargando…

Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors

Size engineering is deemed to be an adoptable method to boost the electrochemical properties of potassium‐ion storage; however, it remains a critical challenge to significantly reduce the nanoparticle size without compromising the uniformity. In this work, a series of MoP nanoparticle splotched nitr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zong, Wei, Chui, Ningbo, Tian, Zhihong, Li, Yuying, Yang, Chao, Rao, Dewei, Wang, Wei, Huang, Jiajia, Wang, Jingtao, Lai, Feili, Liu, Tianxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025015/
https://www.ncbi.nlm.nih.gov/pubmed/33854899
http://dx.doi.org/10.1002/advs.202004142
_version_ 1783675428772249600
author Zong, Wei
Chui, Ningbo
Tian, Zhihong
Li, Yuying
Yang, Chao
Rao, Dewei
Wang, Wei
Huang, Jiajia
Wang, Jingtao
Lai, Feili
Liu, Tianxi
author_facet Zong, Wei
Chui, Ningbo
Tian, Zhihong
Li, Yuying
Yang, Chao
Rao, Dewei
Wang, Wei
Huang, Jiajia
Wang, Jingtao
Lai, Feili
Liu, Tianxi
author_sort Zong, Wei
collection PubMed
description Size engineering is deemed to be an adoptable method to boost the electrochemical properties of potassium‐ion storage; however, it remains a critical challenge to significantly reduce the nanoparticle size without compromising the uniformity. In this work, a series of MoP nanoparticle splotched nitrogen‐doped carbon nanosheets (MoP@NC) is synthesized. Due to the coordinate and hydrogen bonds in the water‐soluble polyacrylamide hydrogel, MoP is uniformly confined in a 3D porous NC to form ultrafine nanoparticles which facilitate the extreme exposure of abundant three‐phase boundaries (MoP, NC, and electrolyte) for ionic binding and storage. Consequently, MoP@NC‐1 delivers an excellent capacity performance (256.1 mAh g(−1) at 0.1 A g(−1)) and long‐term cycling durability (89.9% capacitance retention after 800 cycles). It is further confirmed via density functional theory calculations that the smaller the MoP nanoparticle, the larger the three‐phase boundary achieved for favoring competitive binding energy toward potassium ions. Finally, MoP@NC‐1 is applied as highly electroactive additive for 3D printing ink to fabricate 3D‐printed potassium‐ion hybrid capacitors, which delivers high gravimetric energy/power density of 69.7 Wh kg(−1)/2041.6 W kg(−1), as well as favorable areal energy/power density of 0.34 mWh cm(−2)/9.97 mW cm(−2).
format Online
Article
Text
id pubmed-8025015
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80250152021-04-13 Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors Zong, Wei Chui, Ningbo Tian, Zhihong Li, Yuying Yang, Chao Rao, Dewei Wang, Wei Huang, Jiajia Wang, Jingtao Lai, Feili Liu, Tianxi Adv Sci (Weinh) Full Papers Size engineering is deemed to be an adoptable method to boost the electrochemical properties of potassium‐ion storage; however, it remains a critical challenge to significantly reduce the nanoparticle size without compromising the uniformity. In this work, a series of MoP nanoparticle splotched nitrogen‐doped carbon nanosheets (MoP@NC) is synthesized. Due to the coordinate and hydrogen bonds in the water‐soluble polyacrylamide hydrogel, MoP is uniformly confined in a 3D porous NC to form ultrafine nanoparticles which facilitate the extreme exposure of abundant three‐phase boundaries (MoP, NC, and electrolyte) for ionic binding and storage. Consequently, MoP@NC‐1 delivers an excellent capacity performance (256.1 mAh g(−1) at 0.1 A g(−1)) and long‐term cycling durability (89.9% capacitance retention after 800 cycles). It is further confirmed via density functional theory calculations that the smaller the MoP nanoparticle, the larger the three‐phase boundary achieved for favoring competitive binding energy toward potassium ions. Finally, MoP@NC‐1 is applied as highly electroactive additive for 3D printing ink to fabricate 3D‐printed potassium‐ion hybrid capacitors, which delivers high gravimetric energy/power density of 69.7 Wh kg(−1)/2041.6 W kg(−1), as well as favorable areal energy/power density of 0.34 mWh cm(−2)/9.97 mW cm(−2). John Wiley and Sons Inc. 2021-02-02 /pmc/articles/PMC8025015/ /pubmed/33854899 http://dx.doi.org/10.1002/advs.202004142 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Zong, Wei
Chui, Ningbo
Tian, Zhihong
Li, Yuying
Yang, Chao
Rao, Dewei
Wang, Wei
Huang, Jiajia
Wang, Jingtao
Lai, Feili
Liu, Tianxi
Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title_full Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title_fullStr Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title_full_unstemmed Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title_short Ultrafine MoP Nanoparticle Splotched Nitrogen‐Doped Carbon Nanosheets Enabling High‐Performance 3D‐Printed Potassium‐Ion Hybrid Capacitors
title_sort ultrafine mop nanoparticle splotched nitrogen‐doped carbon nanosheets enabling high‐performance 3d‐printed potassium‐ion hybrid capacitors
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025015/
https://www.ncbi.nlm.nih.gov/pubmed/33854899
http://dx.doi.org/10.1002/advs.202004142
work_keys_str_mv AT zongwei ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT chuiningbo ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT tianzhihong ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT liyuying ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT yangchao ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT raodewei ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT wangwei ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT huangjiajia ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT wangjingtao ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT laifeili ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors
AT liutianxi ultrafinemopnanoparticlesplotchednitrogendopedcarbonnanosheetsenablinghighperformance3dprintedpotassiumionhybridcapacitors