Cargando…
Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea
Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025300/ https://www.ncbi.nlm.nih.gov/pubmed/33868697 http://dx.doi.org/10.1098/rsos.202032 |
_version_ | 1783675465762865152 |
---|---|
author | Jeffries, Claire L. Cansado-Utrilla, Cintia Beavogui, Abdoul H. Stica, Caleb Lama, Eugene K. Kristan, Mojca Irish, Seth R. Walker, Thomas |
author_facet | Jeffries, Claire L. Cansado-Utrilla, Cintia Beavogui, Abdoul H. Stica, Caleb Lama, Eugene K. Kristan, Mojca Irish, Seth R. Walker, Thomas |
author_sort | Jeffries, Claire L. |
collection | PubMed |
description | Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and prevalence rates require confirmation. In this study, wild Anopheles mosquitoes collected from two regions of Guinea were investigated. In contrast with previous studies, RNA was extracted from adult females (n = 516) to increase the chances for the detection of actively expressed Wolbachia genes, determine Wolbachia prevalence rates and estimate relative strain densities. Molecular confirmation of mosquito species and Wolbachia multilocus sequence typing (MLST) were carried out to analyse phylogenetic relationships of mosquito hosts and newly discovered Wolbachia strains. Strains were detected in An. melas (prevalence rate of 11.6%–16/138) and hybrids between An. melas and An. gambiae sensu stricto (prevalence rate of 40.0%–6/15) from Senguelen in the Maferinyah region. Furthermore, a novel high-density strain, termed wAnsX, was found in an unclassified Anopheles species. The discovery of novel Wolbachia strains (particularly in members, and hybrids, of the An. gambiae complex) provides further candidate strains that could be used for future Wolbachia-based malaria biocontrol strategies. |
format | Online Article Text |
id | pubmed-8025300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80253002021-04-16 Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea Jeffries, Claire L. Cansado-Utrilla, Cintia Beavogui, Abdoul H. Stica, Caleb Lama, Eugene K. Kristan, Mojca Irish, Seth R. Walker, Thomas R Soc Open Sci Organismal and Evolutionary Biology Wolbachia, a widespread bacterium which can influence mosquito-borne pathogen transmission, has recently been detected within Anopheles (An.) species that are malaria vectors in Sub-Saharan Africa. Although studies have reported Wolbachia strains in the An. gambiae complex, apparent low density and prevalence rates require confirmation. In this study, wild Anopheles mosquitoes collected from two regions of Guinea were investigated. In contrast with previous studies, RNA was extracted from adult females (n = 516) to increase the chances for the detection of actively expressed Wolbachia genes, determine Wolbachia prevalence rates and estimate relative strain densities. Molecular confirmation of mosquito species and Wolbachia multilocus sequence typing (MLST) were carried out to analyse phylogenetic relationships of mosquito hosts and newly discovered Wolbachia strains. Strains were detected in An. melas (prevalence rate of 11.6%–16/138) and hybrids between An. melas and An. gambiae sensu stricto (prevalence rate of 40.0%–6/15) from Senguelen in the Maferinyah region. Furthermore, a novel high-density strain, termed wAnsX, was found in an unclassified Anopheles species. The discovery of novel Wolbachia strains (particularly in members, and hybrids, of the An. gambiae complex) provides further candidate strains that could be used for future Wolbachia-based malaria biocontrol strategies. The Royal Society 2021-04-07 /pmc/articles/PMC8025300/ /pubmed/33868697 http://dx.doi.org/10.1098/rsos.202032 Text en © 2021 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Organismal and Evolutionary Biology Jeffries, Claire L. Cansado-Utrilla, Cintia Beavogui, Abdoul H. Stica, Caleb Lama, Eugene K. Kristan, Mojca Irish, Seth R. Walker, Thomas Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title | Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title_full | Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title_fullStr | Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title_full_unstemmed | Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title_short | Evidence for natural hybridization and novel Wolbachia strain superinfections in the Anopheles gambiae complex from Guinea |
title_sort | evidence for natural hybridization and novel wolbachia strain superinfections in the anopheles gambiae complex from guinea |
topic | Organismal and Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025300/ https://www.ncbi.nlm.nih.gov/pubmed/33868697 http://dx.doi.org/10.1098/rsos.202032 |
work_keys_str_mv | AT jeffriesclairel evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT cansadoutrillacintia evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT beavoguiabdoulh evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT sticacaleb evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT lamaeugenek evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT kristanmojca evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT irishsethr evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea AT walkerthomas evidencefornaturalhybridizationandnovelwolbachiastrainsuperinfectionsintheanophelesgambiaecomplexfromguinea |