Cargando…
General soliton and (semi-)rational solutions of the partial reverse space y-non-local Mel’nikov equation with non-zero boundary conditions
General soliton and (semi-)rational solutions to the y-non-local Mel’nikov equation with non-zero boundary conditions are derived by the Kadomtsev–Petviashvili (KP) hierarchy reduction method. The solutions are expressed in N × N Gram-type determinants with an arbitrary positive integer N. A possibl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025310/ https://www.ncbi.nlm.nih.gov/pubmed/33868694 http://dx.doi.org/10.1098/rsos.201910 |
Sumario: | General soliton and (semi-)rational solutions to the y-non-local Mel’nikov equation with non-zero boundary conditions are derived by the Kadomtsev–Petviashvili (KP) hierarchy reduction method. The solutions are expressed in N × N Gram-type determinants with an arbitrary positive integer N. A possible new feature of our results compared to previous studies of non-local equations using the KP reduction method is that there are two families of constraints among the parameters appearing in the solutions, which display significant discrepancies. For even N, one of them only generates pairs of solitons or lumps while the other one can give rise to odd numbers of solitons or lumps; the interactions between lumps and solitons are always inelastic for one family whereas the other family may lead to semi-rational solutions with elastic collisions between lumps and solitons. These differences are illustrated by a thorough study of the solution dynamics for N = 1, 2, 3. Besides, regularities of solutions are discussed under proper choices of parameters. |
---|