Cargando…
Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
BACKGROUND: Coronary plaque vulnerability prediction is difficult because plaque vulnerability is non-trivial to quantify, clinically available medical image modality is not enough to quantify thin cap thickness, prediction methods with high accuracies still need to be developed, and gold-standard d...
Autores principales: | Guo, Xiaoya, Maehara, Akiko, Matsumura, Mitsuaki, Wang, Liang, Zheng, Jie, Samady, Habib, Mintz, Gary S., Giddens, Don P., Tang, Dalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025351/ https://www.ncbi.nlm.nih.gov/pubmed/33823858 http://dx.doi.org/10.1186/s12938-021-00868-6 |
Ejemplares similares
-
Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study
por: Lv, Rui, et al.
Publicado: (2020) -
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models
por: Lv, Rui, et al.
Publicado: (2021) -
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
por: Lv, Rui, et al.
Publicado: (2023) -
Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach
por: Guo, Xiaoya, et al.
Publicado: (2022) -
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid–structure interaction simulations
por: Wang, Qingyu, et al.
Publicado: (2021)