Cargando…
Guest-protein incorporation into solvent channels of a protein host crystal (hostal)
Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025882/ https://www.ncbi.nlm.nih.gov/pubmed/33825708 http://dx.doi.org/10.1107/S2059798321001078 |
_version_ | 1783675574045114368 |
---|---|
author | Sprenger, Janina Carey, Jannette Schulz, Alexander Drouard, Fleur Lawson, Catherine L. von Wachenfeldt, Claes Linse, Sara Lo Leggio, Leila |
author_facet | Sprenger, Janina Carey, Jannette Schulz, Alexander Drouard, Fleur Lawson, Catherine L. von Wachenfeldt, Claes Linse, Sara Lo Leggio, Leila |
author_sort | Sprenger, Janina |
collection | PubMed |
description | Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking of protein guests into protein crystals has not been reported. Such protein host crystals (here given the name hostals) incorporating guest proteins may be useful for a wide range of applications in biotechnology, for example as cargo systems or for diffraction studies analogous to the crystal sponge method. The present study takes advantage of crystals of the Escherichia coli tryptophan repressor protein (ds-TrpR) that are extensively domain-swapped and suitable for incorporating guest proteins by diffusion, as they are robust and have large solvent channels. Confocal fluorescence microscopy is used to follow the migration of cytochrome c and fluorophore-labeled calmodulin into the solvent channels of ds-TrpR crystals. The guest proteins become uniformly distributed in the crystal within weeks and enriched within the solvent channels. X-ray diffraction studies on host crystals with high concentrations of incorporated guests demonstrate that diffraction limits of ∼2.5 Å can still be achieved. Weak electron density is observed in the solvent channels, but the guest-protein structures could not be determined by conventional crystallographic methods. Additional approaches that increase the ordering of guests in the host crystal are discussed that may support protein structure determination using the hostal system in the future. This host system may also be useful for biotechnological applications where crystallographic order of the guest is not required. |
format | Online Article Text |
id | pubmed-8025882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-80258822021-04-30 Guest-protein incorporation into solvent channels of a protein host crystal (hostal) Sprenger, Janina Carey, Jannette Schulz, Alexander Drouard, Fleur Lawson, Catherine L. von Wachenfeldt, Claes Linse, Sara Lo Leggio, Leila Acta Crystallogr D Struct Biol Research Papers Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking of protein guests into protein crystals has not been reported. Such protein host crystals (here given the name hostals) incorporating guest proteins may be useful for a wide range of applications in biotechnology, for example as cargo systems or for diffraction studies analogous to the crystal sponge method. The present study takes advantage of crystals of the Escherichia coli tryptophan repressor protein (ds-TrpR) that are extensively domain-swapped and suitable for incorporating guest proteins by diffusion, as they are robust and have large solvent channels. Confocal fluorescence microscopy is used to follow the migration of cytochrome c and fluorophore-labeled calmodulin into the solvent channels of ds-TrpR crystals. The guest proteins become uniformly distributed in the crystal within weeks and enriched within the solvent channels. X-ray diffraction studies on host crystals with high concentrations of incorporated guests demonstrate that diffraction limits of ∼2.5 Å can still be achieved. Weak electron density is observed in the solvent channels, but the guest-protein structures could not be determined by conventional crystallographic methods. Additional approaches that increase the ordering of guests in the host crystal are discussed that may support protein structure determination using the hostal system in the future. This host system may also be useful for biotechnological applications where crystallographic order of the guest is not required. International Union of Crystallography 2021-03-30 /pmc/articles/PMC8025882/ /pubmed/33825708 http://dx.doi.org/10.1107/S2059798321001078 Text en © Sprenger et al. 2021 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Papers Sprenger, Janina Carey, Jannette Schulz, Alexander Drouard, Fleur Lawson, Catherine L. von Wachenfeldt, Claes Linse, Sara Lo Leggio, Leila Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title | Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title_full | Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title_fullStr | Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title_full_unstemmed | Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title_short | Guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
title_sort | guest-protein incorporation into solvent channels of a protein host crystal (hostal) |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025882/ https://www.ncbi.nlm.nih.gov/pubmed/33825708 http://dx.doi.org/10.1107/S2059798321001078 |
work_keys_str_mv | AT sprengerjanina guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT careyjannette guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT schulzalexander guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT drouardfleur guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT lawsoncatherinel guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT vonwachenfeldtclaes guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT linsesara guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal AT loleggioleila guestproteinincorporationintosolventchannelsofaproteinhostcrystalhostal |