Cargando…
Extraction of organic chemistry grammar from unsupervised learning of chemical reactions
Humans use different domain languages to represent, explore, and communicate scientific concepts. During the last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical transformation, a proces...
Autores principales: | Schwaller, Philippe, Hoover, Benjamin, Reymond, Jean-Louis, Strobelt, Hendrik, Laino, Teodoro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026122/ https://www.ncbi.nlm.nih.gov/pubmed/33827815 http://dx.doi.org/10.1126/sciadv.abe4166 |
Ejemplares similares
-
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
por: Pesciullesi, Giorgio, et al.
Publicado: (2020) -
“Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
por: Schwaller, Philippe, et al.
Publicado: (2018) -
Inferring experimental procedures from text-based representations of chemical reactions
por: Vaucher, Alain C., et al.
Publicado: (2021) -
Automated extraction of chemical synthesis actions from experimental procedures
por: Vaucher, Alain C., et al.
Publicado: (2020) -
Molecular Transformer: A Model for Uncertainty-Calibrated
Chemical Reaction Prediction
por: Schwaller, Philippe, et al.
Publicado: (2019)