Cargando…

NanoSINC-seq dissects the isoform diversity in subcellular compartments of single cells

Alternative mRNA isoforms play a key role in generating diverse protein isoforms. To dissect isoform usage in the subcellular compartments of single cells, we introduced an novel approach, nanopore sequencing coupled with single-cell integrated nuclear and cytoplasmic RNA sequencing, that couples mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Oguchi, Yusuke, Ozaki, Yuka, Abdelmoez, Mahmoud N., Shintaku, Hirofumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026137/
https://www.ncbi.nlm.nih.gov/pubmed/33827812
http://dx.doi.org/10.1126/sciadv.abe0317
Descripción
Sumario:Alternative mRNA isoforms play a key role in generating diverse protein isoforms. To dissect isoform usage in the subcellular compartments of single cells, we introduced an novel approach, nanopore sequencing coupled with single-cell integrated nuclear and cytoplasmic RNA sequencing, that couples microfluidic fractionation, which separates cytoplasmic RNA from nuclear RNA, with full-length complementary DNA (cDNA) sequencing using a nanopore sequencer. Leveraging full-length cDNA reads, we found that the nuclear transcripts are notably more diverse than cytoplasmic transcripts. Our findings also indicated that transcriptional noise emanating from the nucleus is regulated across the nuclear membrane and then either attenuated or amplified in the cytoplasm depending on the function involved. Overall, our results provide the landscape that shows how the transcriptional noise arising from the nucleus propagates to the cytoplasm.