Cargando…
AFI-Net: Attention-Guided Feature Integration Network for RGBD Saliency Detection
This article proposes an innovative RGBD saliency model, that is, attention-guided feature integration network, which can extract and fuse features and perform saliency inference. Specifically, the model first extracts multimodal and level deep features. Then, a series of attention modules are deplo...
Autores principales: | Li, Liming, Zhao, Shuguang, Sun, Rui, Chai, Xiaodong, Zheng, Shubin, Chen, Xingjie, Lv, Zhaomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026315/ https://www.ncbi.nlm.nih.gov/pubmed/33859681 http://dx.doi.org/10.1155/2021/8861446 |
Ejemplares similares
-
Deep Attention Models for Human Tracking Using RGBD
por: Rasoulidanesh, Maryamsadat, et al.
Publicado: (2019) -
Comparison of Diagnostic Efficacy Between AFI, NBI, and AFI Combined with NBI for Colonic Cancers: A Meta-Analysis
por: Lv, Xiuhe, et al.
Publicado: (2017) -
Research on track fastener positioning method based on local unidirectional template matching
por: Li, Liang, et al.
Publicado: (2021) -
RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots
por: Shan, Zeyong, et al.
Publicado: (2019) -
Multiscale Cascaded Attention Network for Saliency Detection Based on ResNet
por: Jian, Muwei, et al.
Publicado: (2022)