Cargando…
A machine learning‐based survival prediction model of high grade glioma by integration of clinical and dose‐volume histogram parameters
PURPOSE: Glioma is the most common type of primary brain tumor in adults, and it causes significant morbidity and mortality, especially in high‐grade glioma (HGG) patients. The accurate prognostic prediction of HGG is vital and helpful for clinicians when developing therapeutic strategies. Therefore...
Autores principales: | Chen, Haiyan, Li, Chao, Zheng, Lin, Lu, Wei, Li, Yanlin, Wei, Qichun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026951/ https://www.ncbi.nlm.nih.gov/pubmed/33760360 http://dx.doi.org/10.1002/cam4.3838 |
Ejemplares similares
-
Machine Learning Based on Diffusion Kurtosis Imaging Histogram Parameters for Glioma Grading
por: Jiang, Liang, et al.
Publicado: (2022) -
Machine Learning of Dose-Volume Histogram Parameters Predicting Overall Survival in Patients with Cervical Cancer Treated with Definitive Radiotherapy
por: Xu, Zhiyuan, et al.
Publicado: (2022) -
Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning
por: Jiao, Sheng xiu, et al.
Publicado: (2021) -
Effect of RTOG breast/chest wall guidelines on dose‐volume histogram parameters
por: Rudra, Sonali, et al.
Publicado: (2014) -
An autophagic gene‐based signature to predict the survival of patients with low‐grade gliomas
por: Chen, Jian, et al.
Publicado: (2021)