Cargando…
Penalization and shrinkage methods produced unreliable clinical prediction models especially when sample size was small
OBJECTIVES: When developing a clinical prediction model, penalization techniques are recommended to address overfitting, as they shrink predictor effect estimates toward the null and reduce mean-square prediction error in new individuals. However, shrinkage and penalty terms (‘tuning parameters’) ar...
Autores principales: | Riley, Richard D., Snell, Kym I.E., Martin, Glen P., Whittle, Rebecca, Archer, Lucinda, Sperrin, Matthew, Collins, Gary S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026952/ https://www.ncbi.nlm.nih.gov/pubmed/33307188 http://dx.doi.org/10.1016/j.jclinepi.2020.12.005 |
Ejemplares similares
-
External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb
por: Snell, Kym I.E., et al.
Publicado: (2021) -
Developing clinical prediction models when adhering to minimum sample
size recommendations: The importance of quantifying bootstrap variability in
tuning parameters and predictive performance
por: Martin, Glen P, et al.
Publicado: (2021) -
Minimum sample size for developing a multivariable prediction model: PART II ‐ binary and time‐to‐event outcomes
por: Riley, Richard D, et al.
Publicado: (2018) -
Tratado de derecho penal especial /
Publicado: (1969) -
Derecho penal especial de España
por: Cuello Calón, Eugenio, 1879-
Publicado: (1946)