Cargando…
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
Human spinal balance assessment relies considerably on sagittal radiographic parameter measurement. Deep learning could be applied for automatic landmark detection and alignment analysis, with mild to moderate standard errors and favourable correlations with manual measurement. In this study, based...
Autores principales: | Yeh, Yu-Cheng, Weng, Chi-Hung, Huang, Yu-Jui, Fu, Chen-Ju, Tsai, Tsung-Ting, Yeh, Chao-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027006/ https://www.ncbi.nlm.nih.gov/pubmed/33828159 http://dx.doi.org/10.1038/s41598-021-87141-x |
Ejemplares similares
-
Radiographic Comparison between Cervical Spine Lateral and Whole-Spine Lateral Standing Radiographs
por: Park, Moon Soo, et al.
Publicado: (2015) -
Cervical spine lateral radiograph versus whole spine lateral radiograph: A retrospective comparative study to identify a better modality to assess cervical sagittal alignment
por: Lee, Dong-Ho, et al.
Publicado: (2021) -
2-step deep learning model for landmarks localization in spine radiographs
por: Cina, Andrea, et al.
Publicado: (2021) -
Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework
por: Weng, Chi-Hung, et al.
Publicado: (2019) -
The effect of breast cancer surgery on spine alignment: Whole-spine radiograph analysis
por: Nam, Kyung Eun, et al.
Publicado: (2022)