Cargando…
Assessing the potential for deep learning and computer vision to identify bumble bee species from images
Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological research, species-level identification is expensive, time consuming, and requires specialized taxonomic training. However, deep learning and computer vision are providing ways to open this methodolo...
Autores principales: | Spiesman, Brian J., Gratton, Claudio, Hatfield, Richard G., Hsu, William H., Jepsen, Sarina, McCornack, Brian, Patel, Krushi, Wang, Guanghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027374/ https://www.ncbi.nlm.nih.gov/pubmed/33828196 http://dx.doi.org/10.1038/s41598-021-87210-1 |
Ejemplares similares
-
Using Bumble Bee Watch to investigate the accuracy and perception of bumble bee (Bombus spp.) identification by community scientists
por: MacPhail, Victoria J., et al.
Publicado: (2020) -
Detecting common coccinellids found in sorghum using deep learning models
por: Wang, Chaoxin, et al.
Publicado: (2023) -
Deep Sequencing and Ecological Characterization of Gut Microbial Communities of Diverse Bumble Bee Species
por: Lim, Haw Chuan, et al.
Publicado: (2015) -
Honey Bee and Bumble Bee Antiviral Defense
por: McMenamin, Alexander J., et al.
Publicado: (2018) -
Within-Year Effects of Prescribed Fire on Bumble Bees (Hymenoptera: Apidae) and Floral Resources
por: Tai, T M, et al.
Publicado: (2022)