Cargando…
Ultrasound-targeted microbubble destruction enhances the anti-tumor action of miR-4284 inhibitor in non-small cell lung cancer cells
MicroRNAs (miRNAs/miRs) are known to be involved in various human cancer types. Ultrasound-targeted microbubble destruction (UTMD) may improve the transfection efficiency of exogenous genes into target tissues and organs, thereby improving cancer treatment. In the present study, the role of miR-4284...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027739/ https://www.ncbi.nlm.nih.gov/pubmed/33850523 http://dx.doi.org/10.3892/etm.2021.9983 |
Sumario: | MicroRNAs (miRNAs/miRs) are known to be involved in various human cancer types. Ultrasound-targeted microbubble destruction (UTMD) may improve the transfection efficiency of exogenous genes into target tissues and organs, thereby improving cancer treatment. In the present study, the role of miR-4284 in non-small cell lung cancer (NSCLC) was investigated and the effect of UTMD-mediated inhibition of miR-4284 on tumor progression was further analyzed. The expression of miR-4284 in NSCLC cells and tissues was detected by reverse transcription-quantitative PCR. UTMD-mediated inhibition of miR-4284 was achieved by co-transfection of microvesicles and miR-4284 inhibitors into NSCLC cells. A Cell Counting Kit-8 assay was used to determine NSCLC cell proliferation, and the migration and invasion of NSCLC cells were examined by Transwell assays. Compared with that in the control group, the expression of miR-4284 was increased in NSCLC tissues and cells. Knockdown of miR-4284 in NSCLC cells inhibited cell proliferation, migration and invasion. UTMD improved the transfection efficiency of miR-4284 inhibitors in NSCLC cells, resulting in more significant inhibition of tumor cell proliferation, migration and invasion. In conclusion, the results indicated that the expression of miR-4284 was increased in clinical samples and cell lines of NSCLC and that knockdown of miR-4284 inhibited the proliferation, migration and invasion of tumor cells. UTMD-mediated miR-4284 inhibition further promoted this effect, indicating that this technique may represent a novel strategy for the treatment of NSCLC. |
---|