Cargando…
Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3)
BACKGROUND: PCV3 is a member of the Circovirus family, associated with disease and mortality in pigs. It is not clear whether PCV3 putatively causes clinical symptoms and disease. In the present case, we reported a gilt infected with PCV3 associated with reproductive failures, vertical transmission,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028087/ https://www.ncbi.nlm.nih.gov/pubmed/33832500 http://dx.doi.org/10.1186/s12917-021-02862-5 |
Sumario: | BACKGROUND: PCV3 is a member of the Circovirus family, associated with disease and mortality in pigs. It is not clear whether PCV3 putatively causes clinical symptoms and disease. In the present case, we reported a gilt infected with PCV3 associated with reproductive failures, vertical transmission, tissue lesions, viral replication by in situ hybridization, and the hypothesis that some strains of PCV3 clade one are associated with reproductive failures at the field level. CASE PRESENTATION: In May 2019, a pig farm in Colombia reported increased reproductive failures, and the presence of PCV3 in gilts and sows was established in a single form or coinfections, mainly with PCV2 and PPV7. Ten sows with a single infection with PCV3 were found, and one gilt with a pre-farrowing serum viral load above 10(3) was studied. This gilt was followed up during the pre-farrowing, farrowing period and on her litter for 6 weeks. During dystocic farrowing, a mummy and ten piglets were released, including two weak-born piglets. The highest viral loads for PCV3 were found in the mummy and the placenta. In the weak-born piglets, there were viral loads both in serum and in tissues, mainly in the mesenteric ganglia and lung. Replication of PCV3 in these tissues was demonstrated by in situ hybridizations. PCV3 was also found in the precolostrum sera of piglets and colostrum, showing vertical transmission. The viral load in piglets decreased gradually until week six of life. The viral genome’s complete sequencing was made from the mummy, and its analysis classified it as PCV3 clade one. CONCLUSIONS: This report confirms that PCV3 can cause disease at the field level, and putatively, in this case, we find the generation of reproductive failures. The ability of PCV3 to cause disease as a putative pathogen may be associated with the viral load present in the pig and the strain that is affecting the farm. For this case, we found that viral loads above 10(3) (4.93 log genomic copies / mL) in the gilt were associated with clinical manifestation and that some PCV3 strains belonging to clade one are more associated with the reproductive presentation. |
---|