Cargando…
miR-122-5p regulates the tight junction of the blood-testis barrier of mice via occludin: miR-122-5p can regulate the tight junction
BACKGROUND: Occludin protein is the primary assembling protein of TJs and the structural basis for tight junction formation between Sertoli cells in the spermatogenic epithelium. The expression of miR-122-5p and occludin are negatively correlated. In order to investigate the regulation mechanism of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028252/ https://www.ncbi.nlm.nih.gov/pubmed/33827415 http://dx.doi.org/10.1186/s12610-021-00126-8 |
Sumario: | BACKGROUND: Occludin protein is the primary assembling protein of TJs and the structural basis for tight junction formation between Sertoli cells in the spermatogenic epithelium. The expression of miR-122-5p and occludin are negatively correlated. In order to investigate the regulation mechanism of miR-122-5p on occludin and TJ, the present study isolated primary Sertoli cells from C57BL/6 mice, identified a transcription factor of miR-122-5p in testicle, studied the modulating loci of miR-122-5p on occludin using a dual-luciferase reporter assay, analyzed the regulate of miR-122-5p on the expression of occludin with real-time RT-PCR and Western blot, and studied the effect of miR-122-5p on the tight junction using a Millicell Electrical Resistance System. RESULTS: The relative luciferase activity in the pcDNA-Sp1 + pGL3-miR-122-5p promoter group was significantly higher than that in the pcDNA-Sp1 + pGL3-basic group, which suggests that transcript factor Sp1 promotes the transcription of miR-122-5p. The relative luciferase activity in the occludin 3′-UTR (wt) + miR-122-5p mimic group was significantly lower than that in the other groups (p < 0.01), which indicates that miR-122-5p modulates the expression of occludin via the ACACTCCA sequence of the occludin-3’UTR. The levels of occludin mRNA and protein in the miR-122-5p mimic group were significantly lower than that in the other groups (p < 0.05), which indicates that miR-122-5p reduces the expression of occludin. The trans-epithelial resistance of the miR-122-5p mimic group was significantly lower than that of the blank control group after day 4 (p < 0.05), which indicates that miR-122-5p inhibited the assembly of the inter-Sertoli TJ permeability barrier in vitro. CONCLUSION: These results displayed that miR-122-5p could regulate tight junctions via the Sp1-miR-122-5p-occludin-TJ axis. |
---|