Cargando…
Predicting cell invasion in breast tumor microenvironment from radiological imaging phenotypes
BACKGROUND: The abundance of immune and stromal cells in the tumor microenvironment (TME) is informative of levels of inflammation, angiogenesis, and desmoplasia. Radiomics, an approach of extracting quantitative features from radiological imaging to characterize diseases, have been shown to predict...
Autores principales: | Arefan, Dooman, Hausler, Ryan M., Sumkin, Jules H., Sun, Min, Wu, Shandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028733/ https://www.ncbi.nlm.nih.gov/pubmed/33827490 http://dx.doi.org/10.1186/s12885-021-08122-x |
Ejemplares similares
-
Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction
por: Hao, Degan, et al.
Publicado: (2022) -
A machine and human reader study on AI diagnosis model safety under attacks of adversarial images
por: Zhou, Qianwei, et al.
Publicado: (2021) -
A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma
por: Yang, Lu, et al.
Publicado: (2022) -
Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer
por: Li, Huanhuan, et al.
Publicado: (2021) -
Breast MRI contrast enhancement kinetics of normal parenchyma correlate with presence of breast cancer
por: Wu, Shandong, et al.
Publicado: (2016)